Estimating Subsurface Thermohaline Structure in the tropical Western Pacific using DO-ResNet model

Image credit: Xianmei Zhou

Abstract

Estimating the ocean’s subsurface thermohaline information from satellite measurements is essential for understanding ocean dynamics and El Niño phenomenon. This paper proposes an improved double-output Residual Neural Network (DO-ResNet) model to concurrently estimate the subsurface temperature (ST) and subsurface salinity (SS) in the tropical Western Pacific using multi-source remote sensing data, including sea surface temperature (SST), sea surface salinity (SSS), sea surface height anomaly (SSHA), sea surface wind (SSW), and geographical information (including longitude and latitude). In the model experiment, Argo data were used to train and validate the model, and the root mean square error (RMSE), normalized root mean square error (NRMSE) and coefficient of determination (R²) were employed to evaluate the model’s performance. The results showed that the sea surface parameters selected in this study have a positive effect on the estimation process, and the average RMSE and R² values for estimating ST (SS) by the proposed model are 0.34 “°C " (0.05 psu) and 0.91 (0.95), respectively. Under the data conditions considered in this study, DO-ResNet demonstrates superior performance relative to the extreme gradient boosting model, random forest model, and artificial neural network model. Additionally, this study evaluates the model’s accuracy by comparing its estimations of ST and SS across different depths with Argo data, demonstrating the model’s ability to effectively capture the most spatial features, and by comparing NRMSE across different depths and seasons, the model demonstrates strong adaptability to seasonal variations. In conclusion, this research introduces a novel artificial intelligence technique for estimating ST and SS in the tropical Western Pacific Ocean.

Publication
Atmosphere

SCImago Journal & Country Rank

Xianmei Zhou
Xianmei Zhou
Student of Mathematics
Shanliang Zhu
Shanliang Zhu
Professor of Mathematics
Wentao Jia
Wentao Jia
Student of Mathematics
Hengkai YAO
Hengkai YAO
Ocean Scientist

My research interests include Mesoscale Eddies, AI Oceanography and Underwater Communication.