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Abstract: Estimating the ocean’s subsurface thermohaline information from satellite measurements
is essential for understanding ocean dynamics and the El Niño phenomenon. This paper proposes
an improved double-output residual neural network (DO-ResNet) model to concurrently estimate
the subsurface temperature (ST) and subsurface salinity (SS) in the tropical Western Pacific using
multi-source remote sensing data, including sea surface temperature (SST), sea surface salinity (SSS),
sea surface height anomaly (SSHA), sea surface wind (SSW), and geographical information (including
longitude and latitude). In the model experiment, Argo data were used to train and validate the
model, and the root mean square error (RMSE), normalized root mean square error (NRMSE), and
coefficient of determination (R2) were employed to evaluate the model’s performance. The results
showed that the sea surface parameters selected in this study have a positive effect on the estimation
process, and the average RMSE and R2 values for estimating ST (SS) by the proposed model are
0.34 ◦C (0.05 psu) and 0.91 (0.95), respectively. Under the data conditions considered in this study,
DO-ResNet demonstrates superior performance relative to the extreme gradient boosting model,
random forest model, and artificial neural network model. Additionally, this study evaluates the
model’s accuracy by comparing its estimations of ST and SS across different depths with Argo
data, demonstrating the model’s ability to effectively capture the most spatial features, and by
comparing NRMSE across different depths and seasons, the model demonstrates strong adaptability
to seasonal variations. In conclusion, this research introduces a novel artificial intelligence technique
for estimating ST and SS in the tropical Western Pacific Ocean.

Keywords: oceanography; machine learning; ocean thermohaline structure; remote sensing data;
tropical Western Pacific

1. Introduction

Temperature and salinity are two key parameters of seawater, playing significant roles
in understanding marine ecosystems, ocean dynamics, and climate change. Changes in
temperature can impact various phenomena. These include marine heatwaves (periods of
abnormally high sea surface temperatures), thermocline formation, and the evolution of El
Niño [1–3]. Similarly, salinity variations are crucial for understanding the characteristics of
the hydrological cycle, ocean circulation, and water mass formation [4–6]. Therefore, accu-
rately estimating the subsurface temperature (ST) and subsurface salinity (SS) is vital for
comprehending ocean dynamics, climate change, and predicting future climate scenarios.

However, accurately estimating ST and SS has been a significant challenge. Traditional
methods, including forecast numerical simulations, data assimilation, dynamical models,
and statistical models, have been widely used to estimate these parameters [7–12]. For
instance, Wan et al. [13] analyzed the performance of two data assimilation methods:
the ensemble Kalman filter and ensemble optimal interpolation. They used the hybrid
coordinate ocean model for accurately predicting temperature and salinity in the Pacific
system. The accuracy of the dynamic ocean model largely relies on observational data as
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input. However, the spatiotemporal data provided by in situ observations are often sparse
and discontinuous due to limitations inherent in monitoring systems such as buoys and
Argo floats. These systems have limited coverage and are often constrained by deployment
locations and operational durations. Data gaps can negatively impact data assimilation
and forecasting accuracy. This can potentially lead to the omission of complex ocean
dynamics [14], which may ultimately affect ST and SS estimation. Consequently, due
to these limitations, classical methods struggle with challenges such as limited spatial
coverage, low spatiotemporal resolution, and reduced accuracy.

In response to these challenges, remote sensing technology has rapidly developed
over the past few decades. This technology offers an alternative approach to acquiring
continuous and extensive sea surface data. Parameters such as sea surface temperature
(SST), sea surface salinity (SSS), and sea surface height (SSH) have been accumulated.
Many studies have demonstrated that subsurface properties can be characterized by related
surface parameters [15–23]. For example, Chu et al. [16] demonstrated that the ocean
interior temperature structure is closely related to SST. They showed that SST can be used
to estimate the ST. Consequently, many researchers have combined ocean surface data
with methods such as linear regression [17], least-squares regression [18,19], and empirical
orthogonal functions (EOF) [20,23] to retrieve the three-dimensional structure of the ocean
interior. For instance, Guinehut et al. [22] utilized satellite altimeter data and sea surface
observations to derive global temperature and salinity fields through linear regression
methods. Similarly, Maes et al. [21] reconstructed the subsurface salinity structure of the
tropical Western Pacific by employing EOF with SSH and SST data. Although remote
sensing technology provides continuous and extensive sampling, traditional methods
such as data assimilation and numerical simulations of subsurface ocean variables are
still challenging. These methods are often computationally intensive and do not always
ensure high accuracy in estimations. Additionally, inherent differences between various
data sources and observation methods can also impact the model’s effectiveness. Given the
limitations of traditional methods, researchers have increasingly adopted more advanced
computational techniques to overcome these challenges.

In recent years, machine learning (ML) models have attracted significant attention
in the field of oceanography. These models offer a promising alternative to traditional
methods. ML models effectively explore latent relationships within the data. They estimate
the internal physical structure of the ocean based on various observational datasets [24–27].
Early studies have employed machine learning models to retrieve the ocean’s internal
structure from multi-source surface data. For example, Ali et al. [28] utilized artificial
neural networks (ANN) to reconstruct the vertical temperature profile of the Arabian Sea
based on surface ocean data. This data included SST, SSH, wind stress, net radiation, and
net heat flux. In another study, Wu et al. [29] integrated the self-organizing map (SOM)
neural network algorithm with various satellite remote sensing datasets. They used this
integration to reconstruct the subsurface temperature profile of the North Atlantic, demon-
strating their model’s superiority over traditional methods. Given the spatial correlation
of data, Chen et al. [30] combined EOF analysis with the SOM method to estimate the
subsurface temperature structure of the Northwest Pacific using sea surface data. EOF
analysis simplifies and decomposes complex spatial data structures, while the SOM method
captures nonlinear relationships within the data. The integration of these two methods is
better suited for describing the nonlinear dynamic processes in the ocean. Additionally,
Dong et al. [31] proposed a light gradient boosting machine-deep forest method to estimate
the SS of the South China Sea. This approach showcased the potential of this approach in
SS estimation. Su et al. [32–34] used various satellite source data to estimate global ocean
subsurface temperature anomalies with machine learning methods such as random forest
(RF), support vector regression, and other artificial intelligence methods. They also applied
the extreme gradient boosting (XGBoost) model to estimate anomalies in both subsurface
temperature and salinity across the global ocean [35]. These studies underscore the increas-
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ing importance of ML models in advancing oceanographic research and enhancing the
accuracy of ocean parameter estimation.

Building upon this foundation, more sophisticated deep learning (DL) models have
been used to estimate ST and SS. These models further improve the estimation of oceanic
parameters. Meng et al. [36] designed a deep neural network model based on convolutional
neural networks (CNNs). This model uses multi-source satellite sea surface data to estimate
the STA and subsurface salinity anomalies in the Pacific at a higher spatial resolution. By
doing so, they significantly improve the resolution and accuracy of satellite observations in
estimating internal oceanic parameters. Furthermore, Su et al. [37] combined sea surface
remote sensing observations and Argo data to propose a bi-directional long short-term
memory neural network method for predicting global ocean STA and subsurface salinity
anomalies. This approach effectively learns significant temporal features of ocean variability,
thereby enhancing the generalization capability of the prediction model. Cheng et al. [38]
utilized the backpropagation neural network method to determine the ST in the North
Pacific using SSH, SST, SSS, sea surface wind (SSW), and sea surface velocity obtained
from remote sensing satellites. Mao et al. [39] proposed a dual-path convolutional neural
network (DP-CNN) to reconstruct the ST and SS structures in the South China Sea using
sea surface information. Their research demonstrated that DP-CNNs effectively reduce
the issue of detail loss in CNN models. These DL-based research methods provide new
avenues for the estimation of ST and SS.

Existing ML and DL models have shown the capability to estimate ST and SS in many
regions. However, the tropical Western Pacific region is less documented. Additionally,
their computational accuracy still requires improvement, especially in regions with complex
dynamic processes. For instance, Wang et al. [40] proposed an enhanced ANN model based
on multi-source sea surface data to estimate ST in the Western Pacific. However, the
model’s average root mean square error (RMSE) value reached as high as 0.55 ◦C. This
lack of precision may stem from the model’s limited capacity to extract and learn the
spatiotemporal features of complex nonlinear systems. Therefore, there is considerable
potential for improvement in both the model itself and its accuracy.

Motivated by the aforementioned discussions, this study aims to develop a novel
method based on multi-source remote sensing data. The method will estimate the ST
and SS simultaneously in regions with complex dynamic processes in the Western Pacific
region. Research outcomes in this area are relatively scarce, with existing studies typically
focusing on either ST or SS [40,41]. Our proposed method addresses both parameters
simultaneously in a complex, dynamic environment. Consequently, this study proposes
a new estimation method using the double-output residual network (DO-ResNet) model.
The model aims to utilize multiple satellite remote sensing datasets, including SST, SSS,
sea surface height anomalies (SSHA), SSW, and geographic information. These data will
estimate the thermohaline structure in the tropical Western Pacific. Additionally, a series
of estimation models are introduced for comparison in order to evaluate the proposed
model. The remainder of this paper is organized as follows: Section 2 describes the study
area and data. This section details the importance of the area studied and the multi-source
remote sensing datasets used in the research. Section 3 outlines the research methods. It
describes the construction and training process of the DO-ResNet model. Section 4 presents
the research results. This section exhibits the ST and SS estimated by the DO-ResNet
model and assesses the model’s performance and accuracy through error statistics and
comparative analysis. Section 5 summarizes and discusses the research findings. It outlines
the main discoveries and contributions and explores the limitations of the methods as well
as directions for future research.

2. Study Area and Data
2.1. Study Area

The strong El Niño event occurred in the Central and Eastern Pacific, significantly
impacting the global climate [42,43]. As research has progressed, the scope of El Niño
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studies has gradually expanded to the tropical Western Pacific region (Figure 1). As the
region with the highest sea surface temperatures globally, the tropical Western Pacific
contains the largest and warmest body of water in the world [44]. In particular, during
the El Niño event, the Niño 4 region within this area normally maintains sea surface
temperatures at or above the threshold throughout the year, reflecting its significant role in
climate dynamics. Many scholars have found that variations in temperature and salinity in
the tropical Western Pacific critically impact regional oceanic phenomena such as tropical
cyclones, El Niño–Southern Oscillation (ENSO) events, the Pacific Decadal Oscillation,
and monsoon variations [45–48]. To monitor these climate events, extensive observation
systems, such as the Tropical Atmosphere and Ocean/Triangle Trans-Ocean Buoy Network
(TAO/TRITON) array, are deployed in the region. This array provides valuable subsurface
data [49]. However, due to a lack of comprehensive observations, our understanding of the
spatiotemporal variations in temperature and salinity in the tropical Western Pacific remains
limited, significantly constraining research on the thermohaline structure of this region.
Therefore, accurately estimating ST and SS in the tropical Western Pacific is crucial for
understanding the variability of ocean–atmosphere heat fluxes and analyzing the dynamic
mechanisms of oceanic phenomena in this area.
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2.2. Data Source and Preprocessing

The dataset for this study includes a series of sea surface remote sensing data and
Argo gridded data for the tropical Western Pacific region, spanning from January 2010
to December 2020, as summarized in Table 1. The monthly SSS data utilized in this
study are derived from the Soil Moisture and Ocean Salinity (SMOS) Level-3 product [50],
featuring a spatial resolution of 0.25◦ × 0.25◦. The monthly SST data are sourced from the
National Oceanic and Atmospheric Administration (NOAA) [51], comprising interpolated
observations from satellite radiometers, with a spatial resolution of 1◦ × 1◦. The monthly
SSHA data are obtained from the Archiving, Validation, and Interpretation of Satellite
Oceanographic data (AVISO) project [52], with a spatial resolution of 0.25◦× 0.25◦. The SSW
data, encompassing both the northward component (USSW) and the eastward component
(VSSW), are acquired from the Cross-Calibrated Multi-Platform (CCMP) product [53],
with a spatial resolution of 0.25◦ × 0.25◦. To evaluate the model’s performance, this study
utilizes the Argo gridded data product (also referred to as Argo observations hereafter)
developed by Roemmich and Gilson as the label data [54]. This product has undergone
multi-level quality controls and interpolation procedures applied to the raw observational
Argo floats collected from the global oceans. All Argo drifting floats designed to collect



Atmosphere 2024, 15, 1043 5 of 23

ocean subsurface parameters are organized under the international Argo program, which
stands for Array for Real-time Geostrophic Oceanography [55]. The resulting dataset
provides global gridded ocean temperature and salinity with a spatial resolution of 1◦ × 1◦,
encompassing 58 standard depth levels ranging from 5 m to 1975 m. All datasets utilized
in this study are detailed in Table 1.

Table 1. Summary of data used in this study.

Index Contents

Study Area Tropical Western Pacific (25◦ S–25◦ N, 125◦ E–150◦ W)

Data

SSS 2010–2020 SMOS

Input
SST 2010–2020 NOAA

SSHA 2010–2020 AVISO

SSW 2010–2020 CCMP

ST 2010–2020 Argo
Label

SS 2010–2020 Argo

Resolution monthly 0.5◦ × 0.5◦

To ensure the consistency and accuracy of the model, this study employs data spanning
from January 2010 to December 2020. All datasets were processed into monthly averages
and linearly interpolated to a resolution of 0.5◦ × 0.5◦ to guarantee uniform temporal and
spatial coverage. It is important to note that the use of monthly temporal resolution limits
the ability to detect rapid and subtle changes in oceanic and atmospheric conditions that
precede the El Niño event [56], and the interpolation process may affect the accuracy of the
model. To address this, we performed a detailed variance analysis to quantify the impact
of interpolation on the original data. The results showed minimal impact on the data’s
integrity. Data points with missing parameters within the study region were excluded from
the analysis. For the model input, each data point within the region was considered a central
point, with the 81 data points within a 9 × 9 grid surrounding the central point serving
as a two-dimensional image representing that central point. Furthermore, to accelerate
model convergence during training, all remote sensing and Argo data were normalized
using their respective means and standard deviations.

3. Methods
3.1. The DO-ResNet Model

Residual neural network (ResNet) [57] is a deep convolutional neural network archi-
tecture for handling complex image recognition and classification tasks in the nonlinear
case, which consists of multiple convolutional layers and residual blocks. Each residual
block contains several convolutional layers and uses shortcut connections to add the origi-
nal input to the output of the convolutional layers, thus preserving the information from
the input data. Compared to traditional CNNs, ResNet introduces shortcut connections
while retaining the characteristics of CNNs, effectively addressing the vanishing gradient
problem in deep neural networks and demonstrating exceptional intelligent characteristics.
In recent years, people have applied ResNet in various fields to solve practical problems,
such as drug-induced liver injury prediction [58], coral reef semantic segmentation [59],
sea ice detection [60], and others [61,62].

In view of the close relationship between the sea surface parameters and the subsur-
face thermohaline structure of the ocean, a double-output ResNet (DO-ResNet) model is
proposed in this study, which can simultaneously estimate ST and SS based on various sea
surface parameters observed by satellites. The double-output design allows us to extract
features of both temperature and salinity through a single model, resulting in two outputs
and improving the model’s efficiency. The structure of the improved DO-ResNet model is
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illustrated in Figure 2a. Except for the dual output and the first convolutional layer, the
rest of the structure is the same as the original ResNet model. Firstly, the input data passes
through a convolutional layer for preliminary feature extraction. This convolutional layer
uses a 3 × 3 kernel, which effectively captures local features while reducing the impact of
islands on the ocean temperature and salinity information at the ocean–island boundaries.
Secondly, after deep feature extraction through the residual blocks, the data is flattened and
fed into a fully connected layer for integration. Finally, the model estimates temperature
and salinity through two independent output layers.
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The structure of each residual block is shown in Figure 2b, consisting of two 3×3 con-
volutional layers, two rectified linear unit (ReLU) [63] activation functions, and a shortcut
connection. In each residual block, the input data x is processed sequentially through the
first convolutional layer, the ReLU activation function, and the second convolutional layer
to obtain the output F(x, {Wi}) . To preserve the original information of the input data, the
input data x is directly connected to the output of the second convolutional layer via the
shortcut connection. Finally, after passing through the ReLU activation function, the final
output y of the residual block is generated. It is important to note that when the input and
output dimensions are the same, the shortcut connection is represented by a solid line (as
shown in Figure 2a), and the propagation process is as described in Equation (1):

y = x + F(x, {Wi}) (1)

Here, x and y are the input and output vectors of the layers considered.
F(x, {Wi}) = σ(W1x) represents the learned residual mapping, where σ denotes the ReLU
activation function. Similarly, shortcut connections that span feature maps of different
dimensions are represented by dashed lines (as shown in Figure 2a). In this case, a 1 × 1
convolutional layer is used to perform dimensionality upscaling on the input data x, and
the propagation process is as described in Equation (2):

y = Wsx + F(x, {Wi}) (2)

Here, x, y, and F(x, {Wi}) have the same meanings as in Equation (1), and Ws repre-
sents the identity mapping obtained by processing the input x on the shortcut connection
branch. This type of connection effectively reduces the loss of input information during
propagation, preserves the integrity of the input data, and simultaneously lowers the risk of
gradient vanishing, thereby enhancing the stability and performance of the neural network.
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3.2. Experimental Setup

This study utilizes multi-source satellite observational data to develop a DO-ResNet
model for estimating ST and SS within the tropical Western Pacific region. The research
workflow is illustrated in Figure 3 and is divided into three main stages. The first stage
involves the collection and preprocessing of raw data. We collected five sea surface param-
eters: SST, SSS, SSHA, USSW, and VSSW, as well as longitude (LON) and latitude (LAT)
from multiple databases. These datasets were then preprocessed to create a training and
testing dataset comprising gridded data points over 132 months. ST and SS data derived
from Argo data served as the training and testing labels. The second stage is model training.
The monthly average data from January 2010 to December 2019 were used as training
data to train the DO-ResNet model. During this phase, we selected the mean squared
error (MSE) as the loss function. MSE is a smooth and continuous function that facilitates
efficient gradient calculation and optimization. Additionally, its sensitivity to outliers helps
the model reduce errors effectively [64,65]. To better estimate both temperature and salinity
simultaneously in our model, a composite loss function incorporating the MSE of these two
variables is designed, as shown in Equation (3):

loss = λ1loss1 + λ2loss2 (3)
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Here, the coefficients λ1 and λ2 are weights that balance the contributions of the temper-
ature and salinity losses. The loss1 and loss2 represent the MSE for the temperature and salin-
ity estimates, respectively, with their calculation formulas given by Equations (4) and (5).

loss1 =
1
N

N

∑
i=1

(
Ti −

^
Ti

)2

(4)

loss2 =
1
N

N

∑
i=1

(
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^
Si
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(5)
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Here,Ti and Si are the actual temperature and salinity values at the i-th data point,

respectively, while
^
Ti and

^
Si are the model-estimated temperature and salinity values at

that data point. N is sample number.
By adjusting the weight coefficients λ1 and λ2, this composite loss function measures

the training loss for both temperature and salinity, thereby optimizing the model’s overall
performance. To reduce computational cost and based on the quasi-linear relationship
between ocean temperature and salinity in the T−S diagram, we set both λ1 and λ2 to
0.5 [66]. However, it is important to note that this simplification might prevent the model
from achieving optimal performance, as there could be a more effective set of coefficients.
Additionally, to prevent overfitting, we employed random sampling of data points and
an early stopping strategy. The early stopping strategy halts training when the model’s
accuracy does not improve over several consecutive iterations. Moreover, we used a grid
search method to identify the optimal parameter combination for the DO-ResNet model, as
summarized in Table 2.

Table 2. Parameter values of DO-ResNet models.

Estimation Models Parameter Values

DO-ResNet

convolutional layer : size = 3 × 3, stride = 1;
adaptiveavgpool2d : output_size = 1 × 1;
loss function: mse; optimizer: radam; learning rate: 0.02;
reducelronplateau: mode = ‘min’, factor = 0.1, patience = 10;
batch size: 2048; activation function: relu; batchnorm2d;
validation frequency: per epoch earlystopping: patience = 7,
verbose = False, delta = 0

Finally, the model testing is the third stage, as shown in Figure 3. The test data
from each month of 2020 were input into the model to obtain the prediction results. The
performance of the DO-ResNet model was evaluated using the RMSE and determination
coefficient (R2). RMSE, which measures the difference between estimated and observed
values, The R2 metric is employed to evaluate the model’s fitting performance, thereby
assessing its estimation capability. It should be noted that, as a deep learning model, the
accuracy of DO-ResNet is highly sensitive to the quality of the original input data.

4. Results and Discussion
4.1. Identification of Input Variable

A key issue in estimating ST and SS in the tropical Western Pacific is the selection
of model input variables. Previous studies have indicated that incorporating SSW and
geographic information can enhance the accuracy of subsurface temperature and salinity
estimations [37,67,68]. To further investigate the impact of SSW and geographic information
on temperature and salinity estimations in this region, this study designed experiments
with three different combinations of input parameters (Cases 1, 2, and 3) to compare
the results estimated by DO-ResNet with different training inputs. Table 3 presents the
parameter combinations for the three experimental cases. In Case 1, SSS, SST, and SSHA
were selected as input parameters. In Case 2, both USSW and VSSW were added to these
parameters. In Case 3, geographic information (LON and LAT) was added to the input
parameters of Case 2.

Table 3. Presents the optimized combinations of model parameters.

Experiments Training Methods

Case 1 (3 parameters) ST (SS) = Ensemble (SST, SSS, SSHA)
Case 2 (5 parameters) ST (SS) = Ensemble (SST, SSS, SSHA, USSW, VSSW)
Case 3 (7 parameters) ST (SS) = Ensemble (SST, SSS, SSHA, USSW, VSSW, LON, LAT)
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Figure 4 shows the vertical distribution of RMSE and R2 for the three experimental
cases. The results indicate that three experiments are able to estimate the vertical distribu-
tion of ST (SS), with the main error centered on the depth of 150–200 m, which may be an
effect of the thermocline [69]. However, the inclusion of SSW and geographic information
in Case 3 improves the estimation accuracy of the DO-ResNet model in the tropical Western
Pacific Ocean compared to Cases 1 and 2, as evidenced by smaller RMSE values and larger
R2 values. Specifically, the vertically averaged RMSE and R2 for estimating the ST (SS)
were 0.51 ◦C (0.07 psu) and 0.84 (0.92) in Case 1, 0.46 ◦C (0.07 psu) and 0.87 (0.93) in Case 2,
0.35 ◦C (0.05 psu), and 0.91 (0.96) in Case 3, respectively. The DO-ResNet model in Case 3
exhibited significantly lower RMSE values across all depths compared to the results from
Cases 2 and 1, and the R2 values were also notably higher. These results show that the
DO-ResNet model for Case 3 can better fit the nonlinear relationship between the ST (SS)
in the tropical Western Pacific and the input parameters. Similarly, Qi et al. found that
incorporating geographic information improved model accuracy in their study of Pacific
ST [70], a finding that aligns with the improvements observed in Case 3 of our study. How-
ever, including latitude and longitude information may limit the model’s generalizability.
Furthermore, the model’s accuracy needs further enhancement in the dynamically complex
thermocline region and in areas with strong local gradients.
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4.2. Accuracy Comparison between the DO-ResNet Model and Other Models

After determining the optimal parameter combination, this study compared the per-
formance of the DO-ResNet model with three other models: XGBoost (extreme gradient
boosting, a machine learning technique known for its high performance and scalability,
version 1.3.3) [35], RF (an ensemble learning method that constructs multiple decision
trees for classification and regression) implemented with sklearn module (version 0.23.2) in
Python [33], and ANN (a class of models inspired by the human brain for pattern recogni-
tion and prediction) [40] for estimating ST and SS in the tropical Western Pacific using 2020
data. The parameter values for the models are detailed in Table 4.

Table 4. Parameter values of different estimation models.

Models Parameter Values

XGBoost eta = 0.02, min_child_weight = 2.0, max_depth = 5, subsample = 0.8

RF min_samples_split = 100, min_samples_leaf = 20,
max_depth = 8, random_state = 10

ANN number of neural network layers = 3, learning rate = 0.002,
number of neurons per layer = 30, loss function = MSE

Figure 5a,b illustrates the vertical distribution of RMSE and R2 for ST estimates by the
four models. The findings reveal that the RMSE of ST estimates for all models increases
from the sea surface, peaks around 200 m depth, and then decreases with further depth. In
contrast, R2 values show an inverse pattern, decreasing from the surface to 200 m, peaking
around 300 m, and then fluctuating. The DO-ResNet model outperforms the other models
with consistently lower RMSE and higher R2 values across various depths. For SS estimates,
shown in Figure 5c,d, a similar trend is observed: RMSE increases and then decreases,
while R2 decreases initially and peaks at 750 m, and then gradually decreases. At depths of
150–200 m, the DO-ResNet model’s RMSE for SS is relatively higher, and its R2 is relatively
lower, possibly due to the thermocline, which complicates accurate estimation [69]. The
model may struggle to capture the complex dynamics within this depth range. Despite
this, the DO-ResNet model’s average RMSE and R2 for ST (SS) estimates across all depths
are 0.35 ◦C (0.06 psu) and 0.91 (0.96), while the overall average RMSE and R2 for XGBoost,
RF, and ANN are 0.50 ◦C (0.07 psu) and 0.87 (0.93), 0.51 ◦C (0.06 psu) and 0.86 (0.93), and
0.43 ◦C (0.06 psu) and 0.90 (0.94), respectively. For comparison, the average RMSE value for
ST estimated by Wang et al. using the neural network model was 0.55 ◦C, which is higher
than that of the DO-ResNet model, indicating inferior performance [40]. These results
clearly illustrate that the DO-ResNet model surpasses the other models in performance, as
evidenced by its smaller RMSE and higher R2 values. Therefore, the DO-ResNet model is
highly effective in accurately estimating ST and SS in the tropical Western Pacific.
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4.3. Vertical Performance Evaluation of the DO-ResNet Model

This section provides a comprehensive evaluation of the DO-ResNet model’s perfor-
mance in estimating ST and SS from various perspectives. For a comprehensive assessment
of the vertical performance of the DO-ResNet model, we analyzed two representative
sections using annual average data for 2020: a zonal section (section A) along the equator
from 130◦ E to 150◦ W, and a meridional section (section B) along 170◦ E from 25◦ S to
25◦ N. The locations of these sections in the tropical Western Pacific are shown in Figure 1.
The result is shown in Figures 6 and 7.

Figure 6a,b presents the spatial distribution of ST along the zonal section A as observed
by Argo data and estimated by the DO-ResNet model, respectively. Similarly, Figure 6d,e
displays the vertical distribution of ST along section B. The DO-ResNet model exhibits
strong agreement with the Argo observations, accurately capturing the vertical distribution
of ST. The 20 ◦C isotherm highlights a pronounced vertical gradient in both observed
and estimated temperatures at the surface and within the thermocline, consistent with
findings from previous studies regarding thermocline depth [71]. From the surface to the
thermocline depth, seawater temperature decreases rapidly. Beyond the thermocline, the
temperature decline is more gradual, reaching a stable state at depths below 500 m.
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Figure 6c,f displays the difference between the Argo observations and the DO-ResNet
model estimates of ST along the section (Argo observations minus DO-ResNet estimates).
The differences are generally minor, with more significant discrepancies primarily in the
shallow layers. For instance, for section A, at depths shallower than 300 m between 130◦ E
and 160◦ E, the model estimates are approximately 0.8 ◦C lower than the observations,
while between 160◦ E and 150◦ W, there are regions where the model estimates are higher
than the observations. Similarly, Figure 6f shows that larger differences (exceeding 0.5 ◦C)
are primarily located in the shallow layers (50–500 m), likely due to the complex circulation
system in the equatorial Pacific region [70].

Similarly, the DO-ResNet model’s estimates of SS align well with Argo observations
along both zonal and meridional sections, effectively reproducing the distribution charac-
teristics of SS. Figure 7a,b illustrates the vertical distribution of SS along the zonal section,
while Figure 7c depicts the differences between Argo observations and the DO-ResNet
estimates. In the upper ocean layers, specifically between 50 and 100 m, the maximum
salinity difference in certain regions (130◦ E to 150◦ E) reaches 0.23 psu, which may be influ-
enced by the New Guinea Island and Maluku Islands. As depth increases, the DO-ResNet
model’s estimated SS stabilizes, with the difference between the estimated and observed
salinity being less than 0.14 psu. Similarly, Figure 7d,e shows the vertical distribution of SS
along the meridional section, while Figure 7f shows the differences between the two. With
increasing depth, the discrepancies between the DO-ResNet model’s estimates and the
Argo observations along the meridional section gradually decrease. These results confirm
the effectiveness of the DO-ResNet model in estimating SS in the tropical Western Pacific.

To evaluate the performance of the DO-ResNet model at different depths,
Figures 8 and 9 present the annual mean ST and SS at six different depths (50 m, 200 m,
500 m, 1000 m, 1500 m, and 1900 m) estimated by the DO-ResNet model for 2020. The
model’s performance is evaluated by comparing the differences between the Argo data and
the DO-ResNet estimates.

Figure 8 shows the spatial distribution of ST estimated by the DO-ResNet model
at various depths, demonstrating a high degree of consistency with the observed ST. At
50 m depth, Argo observations indicate that the highest temperatures in the tropical
Western Pacific occur at the equator, with sea surface temperatures gradually decreasing
towards both poles, and a distinct thermal front appearing near 5◦ S. The DO-ResNet
model accurately captures this significant thermal feature. At 200 m depth, the differences
between the DO-ResNet model’s estimated ST and the Argo observed ST range from
−1.70 ◦C to 1.55 ◦C, which is greater than the differences at 50 m depth, likely due to the
thermocline’s influence. As depth increases, the temperature stabilizes, and below 1000 m,
the differences between the temperatures from Argo data and DO-ResNet model estimates
are minimal, ranging from −0.20 ◦C to 0.26 ◦C. These results confirm that the DO-ResNet
model is highly accurate in estimating ST in the tropical Western Pacific.

Similarly, Figure 9 illustrates the spatial distribution of SS estimated by the DO-
ResNet model in comparison with Argo observations. The results reveal that the SS values
estimated by the DO-ResNet model show a high degree of consistency with the Argo
observations, effectively reproducing the distribution characteristics of SS. In the upper
ocean layers (50 m and 200 m), the salinity differences across most regions range from
−0.29 psu to 0.26 psu. As depth increases, SS becomes more stable, and the differences
between the salinity estimated by the DO-ResNet model and that provided by Argo are less
than 0.1 psu. These findings confirm the reliability of the DO-ResNet model for estimating
SS in the tropical Western Pacific.
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The temperature–salinity (T−S) diagram is a valuable tool for studying the charac-
teristics of water masses in the equatorial Western Pacific [72]. We selected February
and August of 2020 to represent winter and summer, respectively. Using Argo data and
model estimates for these months, we constructed T−S diagrams for the Western Pacific,
as shown in Figure 10. The figure clearly demonstrates that both the Argo data and
model results consistently capture the features of North Pacific Subtropical Underwater
(NPSTUW), North Pacific Subtropical Mode Water (NPSTMW), North Pacific Central Water
(NPCW), North Pacific Intermediate Water (NPIW), South Pacific Subtropical Mode Water
(SPSTMW), South Pacific Central Water (SPCW), and Antarctic Intermediate Water (AAIW)
during both summer and winter in the tropical Western Pacific [66].
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Figure 10. T−S diagrams of the Western Pacific region for winter (February 2020) and summer
(August 2020), based on Argo data (a,c) and the DO-ResNet model results (b,d). Acronyms: NPCW,
North Pacific Central Water; SPCW, South Pacific Central Water; NPSTUW, North Pacific Subtropical
Underwater; NPSTMW, North Pacific Subtropical Mode Water; SPSTMW, South Pacific Subtropical
Mode Water; NPIW, North Pacific Intermediate Water; AAIW, Antarctic Intermediate Water.

4.4. Seasonal Performance of the DO-ResNet Model

In this section, the months of February, May, August, and November of 2020 have
been chosen to represent winter, spring, summer, and autumn, respectively, to investigate
the model’s performance across different seasons. The model’s performance was evaluated
at 22 different depths (ranging from 30 m to 1900 m) across these four seasons. To ensure
comparability across depths, the RMSE values were divided by the standard deviation of
the observed Argo temperature and salinity values at each depth, resulting in the NRMSE.
The NRMSE and R2 values for different seasons and depths are illustrated in Figure 11.
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Figure 11a presents the vertical distribution of NRMSE and R2 values of the ST esti-
mated by the DO-ResNet model across different seasons and depths. The NRMSE across 
different seasons exhibits a downward trend followed by an upward trend, with a turning 
point occurring at depths of approximately 200 to 400 m. Beyond 600 m, NRMSE rises 
with depth slowly, reflecting the model’s weaker performance in deeper layers, making it 
harder to estimate deeper phenomena with surface data. Additionally, the higher NRMSE 
values at depths shallower than 100 m could be related to the complex dynamic processes 
occurring in the upper ocean. This pattern is consistent with previous studies on model-
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Figure 11. Seasonal performance of the DO-ResNet model for ST (a) and SS (b) estimation at different
depths in the tropical Western Pacific in 2020. The data are presented with error bar representing 95%
confidence interval. Blue indicates February (winter), orange indicates May (spring), green indicates
August (summer), and red indicates November (autumn). The histograms display the NRMSE, while
the lines display R2.

Figure 11a presents the vertical distribution of NRMSE and R2 values of the ST esti-
mated by the DO-ResNet model across different seasons and depths. The NRMSE across
different seasons exhibits a downward trend followed by an upward trend, with a turning
point occurring at depths of approximately 200 to 400 m. Beyond 600 m, NRMSE rises with
depth slowly, reflecting the model’s weaker performance in deeper layers, making it harder
to estimate deeper phenomena with surface data. Additionally, the higher NRMSE values at
depths shallower than 100 m could be related to the complex dynamic processes occurring
in the upper ocean. This pattern is consistent with previous studies on model-estimated
ST in other regions [73]. The DO-ResNet model demonstrates robust performance in esti-
mating ST across different seasons. The maximum NRMSE values for February and May
are 0.40 and 0.42, respectively, while for August and November, they are 0.40 and 0.39,
respectively, indicating better model performance in winter. The estimation accuracy of
the DO-ResNet model varies with the seasons. Average NRMSE (R2) values for February,
August, and November are 0.30 (0.91), 0.32 (0.90), and 0.31 (0.90), respectively, while May
has the highest average NRMSE of 0.34 and the lowest average R2 of 0.88 among the four
seasons, indicating poorer estimation accuracy in summer. The figure also shows higher
NRMSE values at most in summer compared to other seasons.

Figure 11b illustrates the distribution of NRMSE and R2 for the model-estimated SS
across different seasons and depths. The NRMSE values show an increasing trend from
the sea surface to 100 m, then level off between 200 m and 1200 m, and increase again at
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depths greater than 1200 m. This reflects that the DO-ResNet model is able to effectively
estimate subsurface salinity in the 1200 m depth layer based on surface data obtained from
remote sensing, but its accuracy in estimating salinity at deeper depths is reduced. From
the figure, it can be seen that the maximum NRMSE values for February and August occur
around a depth of 70 m, being 0.42 and 0.35, respectively, while for May and November,
the maximum values are 0.36 and 0.39, respectively. This indicates that the DO-ResNet
model has larger errors in spring and autumn at 70 m, which may be affected by seasonal
changes in freshwater fluxes [74] and the thermocline [75]. In general, the seasons had
similar vertically averaged NRMSE and R2, with NRMSE around 0.22 and R2 around
0.94, which suggests that the DO-ResNet model is less seasonally influenced and robust in
estimating SS.

4.5. Correlation Analysis between the ST (SS) and Surface Parameters

In order to evaluate how sea surface parameters influence the performance of the DO-
ResNet model, we determined the Pearson correlation coefficients between SST, SSS, SSHA,
USSW, and VSSW and the ST and SS at various depths (50 m, 60 m, 100 m, 200 m, 500 m,
1000 m, 1500 m, and 1900 m) presented in Figure 12. A higher absolute value of the Pearson
correlation coefficient indicates a greater influence of the sea surface parameter on the
estimation of ST or SS. By comparing these coefficients, we can determine the significance
of each parameter in the model’s estimation of ST and SS at different depths.
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Figure 12. Pearson correlation coefficients between the DO-ResNet model estimated ST (a) and SS
(b) at different depths and the observational sea surface parameters.

Figure 12a illustrates the Pearson correlation coefficients between sea surface param-
eters and the estimated ST. It is evident that SST and SSHA exhibit a strong correlation
with ST. Specifically, SST has the highest correlation with ST at 50 m, with a coefficient
of 0.86, while SSHA shows the highest correlation at 100 m, with a coefficient of 0.63. In
contrast, USSW and VSSW display a weaker correlation with ST, with most coefficients
being less than 0.33. SSS significantly impacts ST in the shallow layers, but its correlation
diminishes with depth, reaching a minimum coefficient of 0.31 at 1000 m. Beyond 1000 m,
its correlation is comparable to that of USSW and VSSW.

Figure 12b shows the correlation of various sea surface parameters with the DO-
ResNet model’s estimates of SS at different depths. The results indicate that SSS, SST, and
SSHA have significant impacts on SS estimation. Specifically, SSS exhibits a high correlation
with SS in the surface layer, with a correlation coefficient of 0.51 at 50 m. However, its
correlation weakens in the deeper ocean, reaching approximately 0.31. SST and SSHA
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maintain correlation coefficients above 0.4 at most depths, indicating their considerable
and stable influence on SS estimation across different depth ranges. In contrast, USSW and
VSSW exhibit weaker correlations with SS. Nevertheless, these parameters still contribute
to SS estimation and should not be disregarded in the estimation process. The analysis
indicates that the selected sea surface parameters are effective variables for estimating both
ST and SS.

5. Conclusions

As the region with the highest sea surface temperatures globally, the tropical Western
Pacific exhibits significant climate signals across various time scales. Its temperature
and salinity demonstrate variations on interannual and decadal scales associated with
major climate patterns such as the ENSO and the Pacific Decadal Oscillation. Accurately
estimating the vertical structure of three-dimensional temperature and salinity fields in
the tropical Western Pacific is crucial for understanding oceanic processes and climate
change. However, due to the challenges and high costs associated with in situ observations,
temperature and salinity data in the tropical Western Pacific remain sparse. This study
introduces an improved DO-ResNet model, utilizing satellite-derived sea surface data (SSS,
SST, SSHA, and SSW) and geographic information (longitude and latitude) as input, with
Argo data employed as the ground truth for training and validation. The model reconstructs
ST and SS in the tropical Western Pacific. The accuracy and reliability of the DO-ResNet
model’s estimates are assessed using RMSE, NRMSE, and R2 metrics. Furthermore, the
model’s performance is evaluated from various perspectives, including spatial distribution,
vertical sections, and seasonal variations.

This study evaluates the accuracy of the DO-ResNet model in estimating ST and
SS by comparing its output at various depths with observational data from Argo floats.
Results indicate that the optimized composite loss function enables the DO-ResNet model
to effectively reconstruct most observed features of ST and SS concurrently in the tropical
Western Pacific. However, due to the presence of the thermocline, the estimation accuracy of
ST and SS is lower at depths around 150–200 m, posing challenges for accurately estimating
the three-dimensional temperature and salinity fields near this depth. Despite this, the
overall performance of the DO-ResNet model is commendable, with the average RMSE
and R2 for ST (SS) being 0.34 ◦C (0.05 psu) and 0.91 (0.95), respectively. Furthermore, this
study evaluates the impact of sea surface parameters on the performance of the DO-ResNet
model, indicating that sea surface variables play a more significant role in the upper ocean,
particularly in shallow layers. SST and SSHA are crucial for estimating ST, while SSS,
SST, and SSHA are key for estimating SS. Moreover, the model exhibits low NRMSE and
high R2 values across all seasons, indicating its robust seasonal applicability for ST and SS
estimation in the tropical Western Pacific.

In summary, the DO-ResNet model demonstrates superior performance in estimating
ST and SS in the tropical Western Pacific. The model exhibits high estimation accuracy
for ST and SS across different depths and seasons. The results of this study are signifi-
cant for understanding the subsurface information of the tropical Western Pacific in the
context of ENSO occurrence and provide a foundation for further research into the ENSO
mechanisms in the tropical Western Pacific. Future research should focus on employing
more advanced artificial intelligence methods and integrating ocean dynamic mechanisms
to further enhance estimation accuracy. Additionally, the application of this model can
be extended to broader oceanic regions, allowing for precise estimation of ST and SS and
facilitating practical applications such as mixed layer depth estimation and ocean hazard
prediction. Moreover, the model can be further utilized to estimate other critical ocean
parameters, such as velocity fields and ocean density, thus opening up new avenues for
future research. It is also recommended to use TAO/TRITON data for cross-validation in
future studies to investigate whether it can improve model performance and increase its
credibility in practical applications.
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