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Abstract  Variations in ocean mixed layer depth (MLD) show a significant impact on energy balance in
the global climate systems and marine ecosystems. At present, the accuracy of modeling MLD, especially
in the region with complex ocean dynamics, remains a challenge, thus calling for an emergency using
artificial intelligence approach to improve the assessment of the MLD. A novel convolutional neural
network model was developed based on a dual-attention module (DA-CNN) to estimate the MLD in the
Bay of Bengal (BoB) by integrating multi-source remote sensing data and Argo gridded data. Compared
with the original CNN model, the DA-CNN model exhibits superior performance with notable
improvements in the annual average root mean square error (RMSE) and R? values by 13.0% and 8.4%,
respectively, while more accurately capturing the seasonal variations in MLD. Moreover, the results using
the DA-CNN model show minimum RMSE and maximum R? values, in comparison to the calculation by
the random forest, artificial neural network model, and the hybrid coordinate ocean model. Accordingly,
our findings suggest that the newly developed DA-CNN model provides an effective advantage in
studying the MLD and the associated ocean processes.

Keyword: mixed layer depth (MLD); remote sensing observation; dual-attention module (DA-CNN); Bay
of Bengal

1 INTRODUCTION 2013). For instance, it has been shown in heat

. budget analysis that the MLD has important
Ocean mixed layer refers to surface depths of the implications for determining the location and

ocean  with  quasi-homogeneous  temperature,  seasonal evolution of warm blobs and temperature
salinity, and density. It is critical for marine primary diagnosis over the New Pacific region (Shi et al.,
production, the exchange of heat, and momentum in 2022). More studies have also indicated that the
ocean-atmosphere interactions (Lorbacher et al.,

2006). In particular, mixed layer depth (MLD) is a
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MLD variability can affect the rate of heat flux
exchange between the ocean and atmosphere, the
ocean’s ability to store and transport heat as well as
carbon (Gadgil et al., 1984; Yamamoto et al., 2015;
Dall’Olmo et al., 2016; Jang et al., 2017; Yu et al.,
2019), and the availability of light and nutrients to
support the growth of phytoplankton (Dickey et al.,
1993; Polovina et al., 1995; de Fommervault et al.,
2017; Diaz et al., 2021; Xue et al., 2022).

According to in-situ observations, the MLD is
predominantly reliant on vertical ocean temperature,
salinity, and thus density profiles (Pailler et al.,
1999; Kara et al., 2000a; Thomson and Fine, 2003;
Holte and Talley, 2009; Helber et al., 2012). The
integration of multi-source observational data and
threshold calculation methods has established a
fundamental groundwork for the investigation of
the MLD and upper-ocean dynamic processes.
However, the spatiotemporal data from in-situ
observations are often discontinuous, and their
discontinuity and incompleteness can affect the
estimation of the MLD. In technique, Holte et al.
(2017) suggested the calculation of MLD using
superior quality indicators better than threshold
methods and significantly mitigates the tendency of
these methods to overestimate the MLD in some
regions with the deep mixed layer in winter. Li et al.
(2017) enhanced the classic Barnes method by
utilizing optimal parameters and response functions
to reduce the error caused by the uneven spatial
distribution of Argo observation data and
established a MLD dataset that retains a more
comprehensive set of mesoscale features. Although
the spatiotemporal resolution of in-situ observation
data and the calculation methods of MLD have been
improved, classic methods still face challenges such
as limited spatial coverage, low spatiotemporal
resolution, and low accuracy (Hosoda et al., 2010;
Holte et al., 2017; Li et al., 2017).

Over the past few decades, various methods have
been widely applied to estimate the MLD, thanks to
the rapid accumulation of in-situ, remote sensing,
and aerial survey data, as well as the rapid
development of ocean information detection
techniques. Previous studies suggested that many
oceanic subsurface phenomena can be characterized
by the relevant surface parameter data (Fiedler,
1988; Vernieres et al., 2014). For example, Rintoul
and Trull (2001) explored the seasonal variations
in MLD and nutrient concentrations by
comprehensively analyzing aerial survey data of
many years in the sub-Antarctic region, revealing
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the seasonal characteristics of the MLD in this
region, which are shallow in summer and deep in
winter. Li et al. (2000) estimated the MLD by
matching the measured internal wave group
velocities with those calculated by the model.
Although  observational data has achieved
continuous and extensive sampling in both time and
space, previous methods such as data assimilation
and numerical simulation of subsurface ocean
variables have generally been complex and
computationally expensive, and their estimation
accuracy cannot be guaranteed (Courtois et al.,
2017; Dwivedi et al., 2018; Wei et al., 2023).

Data-driven artificial intelligence (AI) models
have received quite extensive attention in the field
of oceanography in recent years, demonstrating
superior performance in estimating internal ocean
variables from different observation data (Meng
et al., 2022; Yue et al., 2024). For example, Su et al.
(2021b) proposed a bi-directional long short-term
memory neural networks (Bi-LSTM) method to
predict the global ocean sea surface temperature
anomaly (STA) and sea surface salinity anomaly
(SSA) in combination with surface remote sensing
observations and subsurface Argo gridded data.
Pauthenet et al. (2022) proposed an estimation
method for the MLD in the Gulf of Mexico based on
a multilayer perceptron, demonstrating the potential
of machine learning methods in MLD estimation.
Jeong et al. (2019) utilized high spatiotemporal
resolution satellite sea surface data to reconstruct a
3D thermohaline field in the ocean subsurface layer,
and further estimated and analyzed the decadal
variations in the global MLD. Foster et al. (2021)
tested a variety of traditional and probabilistic
machine learning techniques for the southern Indian
and eastern equatorial Pacific regions and found that
machine learning models combined with sea surface
data can effectively improve the estimation accuracy
of MLD compared with the optimal interpolation of
Argo observation data. Su et al. (2024) proposed a
Residual Convolutional Gate Recurrent Unit neural
network to estimate the global MLD and the model
can efficiently extract spatio-temporal features from
ocean observations. These research methods based
on Al techniques provide a new way of developing
MLD estimation.

Although Al models have exhibited capability in
estimating the MLD, the limitations of observational
data and models have led to some remaining issues
such as few input parameters, relatively simple
models (Foster et al, 2021; Gu et al, 2022;
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Pauthenet et al., 2022) and high estimation errors
(Su et al., 2024). For example, Gu et al. (2022) used
a pre-clustering-based artificial neural network
(ANN) model and estimated the MLD in the Indian
Ocean but with an averaged estimation error of
about 3.79 m, and the estimation errors increased to
7.02m and 9.15 m in the Arabian Sea and the Bay
of Bengal (BoB), respectively. This could be
attributed to the insufficient ability of the model to
extract and learn spatiotemporal characteristics with
complex nonlinear relationships. Therefore, both the
model itself and its accuracy have considerable
potential improvement.

Furthermore, deep learning models based on
attention mechanisms have attracted the attention of
oceanographers (Li et al., 2022). Qi et al. (2023)
developed a CNN model based on the attention
mechanism to reconstruct the 3D thermohaline field
in the Indian Ocean and achieved excellent results.
Ren et al. (2022) developed a U-net model based on
an attention module to classify the sea ice and open
water from SAR images, and the results showed that
the proposed method significantly improved the
classification accuracy compared with the original
U-net model.

Motivated by the aforementioned discussions,
the primary objective of this study is to investigate a
new way to estimate the MLD in some typical
regions with complex dynamic processes by
developing a novel Al model based on multi-source
remote sensing data. Here, we proposed a CNN
model based on a dual-attention module (DA-CNN)
to estimate the MLD using multi-source satellite
observation data in the BoB, as a case study. In
addition, we evaluated the proposed model by
comparing its performance with the data-driven
CNN model, random forest (RF) model, and ANN
model, as well as the physics-driven hybrid
coordinate ocean model (HYCOM ).

2 STUDY AREA AND DATA

2.1 Study area

The BoB (5°N-20°N, 80°E-95°E), adjoining
Asia and occupying the eastern part of the tropical
Indian Ocean, is an important part of the Indo-
Pacific warm pool (Fig.1). The salinity in the BoB
shows significant spatial and temporal variations
due to the freshwater runoff from the hinterland
river and substantial precipitation associated with
summer monsoons (Howden and Murtugudde,
2001; Vinayachandran et al., 2002; Akhil et al.,
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2020). As a result, these abnormal fluctuations lead
to large variability in the MLD of this region, which
has a critical impact on some regional oceanic
phenomena such as tropical cyclones, El Nifio
events, Indian Ocean dipoles, and monsoon
variations (Masson et al., 2005; Yang et al., 2007;
Balaguru et al., 2012; Kumari et al., 2018; Goswami
et al., 2022). Therefore, the accurate estimation of
MLD helps comprehend the variability of the ocean-
atmosphere heat flux and analyze the dynamic
mechanism of these oceanic phenomena in the
region.

2.2 Data source and preprocessing

The datasets in this study involve a series of sea
surface remote sensing data and Argo gridded data
in the BoB from January 2010 to December 2019, as
summarized in Table 1. The sea surface temperature
(SST) data of a horizontal resolution of 0.25°x0.25°
is generated using a daily optimum interpolation
method based on radiometer satellite from the
National Oceanic and Atmospheric Administration
(NOAA) and ship observations (Banzon et al.,
2016). In addition, the sea surface salinity (SSS)
data is sourced from the Soil Moisture and Ocean
Salinity (SMOS) Level-3 salinity product at a
spatial resolution of 0.25°x(0.25° (Boutin et al.,

Table 1 Summary of the data used in this study

Variable Data source Time range Resolution
SSS SMOS Monthly/0.25°x0.25°
SST NOAA Monthly/0.25°%0.25°
SSH AVISO 2010-2019 Monthly/0.25°%0.25°
SSW CCMP Monthly/0.25°%0.25°
MLD Argo Monthly/1°x1°
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2018). The sea surface height (SSH) data is obtained
from the Archiving, Validation, and Interpretation of
Satellite Oceanographic Data (AVISO) project also
at a spatial resolution of 0.25°x0.25° (Hauser et al.,
2021). The eastward component sea surface wind
(USSW) and northward component sea surface wind
(VSSW) values are from the Cross-Calibrated Multi-
Platform (CCMP) product of a spatial resolution of
0.25°x0.25° (Atlas et al., 2011). Moreover, Argo
gridded data are obtained from the Asia Pacific Data
Research Center (APDRC) with a spatial resolution
of 1°x1° (Wong et al., 2020). Additionally, the
MLD used for comparison is derived from the
HYCOM reanalysis data to validate the estimation
performance of the proposed model.

In our calculation, the SST, SSS, SSH, VSSW,
and USSW are independent input variables for
the proposed model. Additionally, geographic
information such as longitude (LON) and latitude
(LAT) can affect the performance of the estimation
model (Gueye et al., 2014; Su et al, 2021a).
Consequently, LON and LAT parameters with the
same resolutions as other input parameters are
selected as input variables for the model. The Argo-
derived MLD gridded data are used as the training
and validation labels for the proposed model in this
study. At the data preprocessing stage, all the data
are monthly and interpolated onto a grid with a
resolution of 0.5°%0.5°, in line with the temporal
and spatial coverage of the BoB to ensure
consistency and accuracy in the modeling
calculation and evaluation. Any data point with
missing parameters within the BoB is excluded.
After that, a total of 120 monthly valid datasets from
January 2010 to December 2019 are obtained, with
653 valid data points for each variable per month.
Finally, all data are normalized by utilizing the mean
and standard deviation of the data to expedite model
convergence.

3 METHOD

The CNN model is widely employed across
various domains in deep learning (Lecun et al.,
1998; Qi et al, 2023). It functions on local
connections and weight sharing, enabling efficient
extraction and learning of features from high-
dimensional geographical spatial data. On the other
hand, the CNN model still confronts challenges, for
instance, information overload and complex
network structures, leading to slow parameter
updates and suboptimal expressive capabilities (Liu
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et al., 2018). In recent years, various attention
mechanisms have been successfully applied to
reduce computational complexity and enhance the
network’s ability to process information (Li et al.,
2022; Ren et al., 2022; Qi et al., 2023). In this study,
an improved DA-CNN model for complex
multidimensional ocean data is proposed by
integrating the dual attention (DA) module into the
CNN architecture and is used to estimate the MLD
in BoB, as an application case. In Section 3.1, the
working principles and advantages of the DA
module are presented, while Section 3.2 provides a
detailed description of the specific architecture and
estimation modeling process of the DA-CNN model.

3.1 DA module

The DA module is an algorithm that utilizes self-
attention mechanisms to adaptively integrate local
semantic features, thereby enhancing the expressive
capabilities of Al models in computer vision tasks
(Fu et al., 2019). The DA module consists of two
submodules, including the channel attention module
(CAM) and the position attention module (PAM).
The CAM captures the channel dependencies
between any two channels and aids the model in
more efficiently combining and selecting features,
ultimately improving its expressiveness and
generalization abilities. The PAM focuses on the
spatial information of input data to capture critical
information at various spatial positions. It helps the
model better understand the significance of different
positions when processing data like images, thereby
enhancing the model’s localization and
discrimination capabilities.

Figure 2 shows the structure of the DA module
and DA-CNN model, where the structure of CAM is
shown in Fig.2a. AeR“"" is the local feature map
output by the previous processing. A is reshaped
into R“" and performed matrix multiplication with
its transpose A’. The softmax layer is applied to
obtain the channel attention map XeR“¢, where x;
measures the i channel’s impact on the j* channel.
A’ is multiplied with X and reshaped into R“”"". R
is multiplied by a scale parameter o and added to the
input A to obtain the output EeR“”" element by
element.

A, A
X e ()

J 5
2

C
E=a ) (x;4,)+4, )
i=1
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where a is initialized to 0 and gradually learns to
assign more weights by the backpropagation. It can
be inferred from Eq.2 that the resulting feature E at
each channel is the weighted sum of the global
features R and local features A, it models the long-
term semantic dependencies between feature maps.

The structure of the PAM is shown in Fig.2b. Ae
RE™W is the local feature map extracted by the
previous processing. H, W, and C are the rows,
columns, and channels, respectively. A is
transformed and reshaped to new feature maps B, C,
and D by passing through three convolutional
layers, respectively, where {B, C, D} eR“" (N=Hx
W). A matrix multiplication and softmax activation
are performed on B and C to obtain the spatial
position map SeR™™. The more similar feature
representations of the two positions contribute to a
greater correlation between them, where s, measures
the i* position’s impact on j® the position. S is
multiplied with D and reshaped to R“/". For each
channel of R, the element of a position is the
weighted sum of elements across all positions in D
based on the weights in S. R is multiplied by a scale
parameter £ and added to the input A in element-
wise to obtain the output EeR“"".

eB,C/

S/i: 2‘:’:1@3@’ (3)
N

E=B> (s,D)+4, 4)
i=1

where £ is initialized to 0 and gradually learns to
assign more weights by the backpropagation. It can
be inferred from Eq.4 that the resulting feature E
integrates the local features A and the global

features R. Thus, it has a global context view and
selectively aggregates context based on a position
attention map.

3.2 DA-CNN model

The DA-CNN model is an improved model of
the CNN model, specifically designed to enhance
the accuracy of estimating MLD from multi-source
remote sensing data. The PAM can help the model
capture spatial relationships among features in the
input data, enabling it to focus on important spatial
locations. The CAM can emphasize the importance
of different feature channels, highlighting
significant features and suppressing irrelevant ones.
The model is capable of focusing its attention on
key wvariables and informative features by
incorporating both the PAM and CAM, capturing
the local and global dependencies of satellite data in
the spatial and channel dimensions, thereby
improving the generalization ability of the model.

The DA-CNN model is composed of
convolutional layers, batch normalization (BN)
layers, Rectified Linear Unit (ReLU) activation
layers, DA modules, global average pooling (GAP)
layers, and fully connected (FC) layers. BN layers
and ReLU activation layers are applied after each
convolutional layer to prevent overfitting as well as
gradient explosion or vanishing. Figure 2c shows
the overall architecture of the DA-CNN model. The
preprocessed satellite observation data are fed into
two parallel attention branches, where local
feature maps are generated through successive
convolutional operations. Each map undergoes
individual attention mechanism processing and
passes to deeper convolutional layers. Subsequently,
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the features from both branches are merged and
further processed through a convolutional layer to
facilitate feature fusion. This convolutional layer
stacks features along the channel dimension,
effectively combining complementary information
from two branches and enhancing feature
discrimination. It reduces the dimensionality while
preserving the information, decreasing the model
complexity and computational resources.
Additionally, a GAP layer is introduced to reduce
computational complexity, followed by FC layers to
output the MLD at a specific coordinate point. This
streamlined process helps the network better
understand and capture complex nonlinear
relationships in the input data, while also speeding
up the model training.

In this study, a DA-CNN model for estimating
the MLD is developed using multi-source satellite
observation data in the BoB. As shown in Fig.3, the
study flow is divided into three stages. The
collection and processing of raw data is the first
stage. The raw datasets of the five sea-surface
parameters (SST, SSS, SSH, USSW, VSSW), as
well as LON and LAT for each point, are collected
and preprocessed from multi-source databases. The
training and testing datasets covering 120 months
and 653 data points per month are established and
the Argo-derived MLD data are used as the training
and testing labels. In the second stage, the monthly
average data from January 2010 through December
2018 are taken as the training datasets to optimize
the model parameters. Specifically, 108-month data
is divided into 12 separate training datasets
according to the same month. Each training dataset
covering 9 months and 653 data points for each
variable per month is fed into a DA-CNN estimation
model for training respectively, leading to 12
estimation models. The experiments determine
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several key hyperparameters that have a significant
impact on the model performance, including the
learning rate and the number of neurons per
layer. The grid search method is employed to
systematically explore combinations of these
hyperparameters over a specified range. The search
range for the learning rate is set between 0.01 and
0.1, and the number of neurons ranges from 16 to
256. The best combination of parameters for the 12
DA-CNN models is presented in Table 2. In the
third stage, the testing data for each month in 2019
is input into the model for the corresponding month
to obtain the results for this month. Meanwhile, the
root mean square error (RMSE) and determination
coefficient (R*) are chosen to evaluate the
performance of the 12 DA-CNN models. The DA
module code is based on open-source code, and the
DA-CNN models are implemented and tested on an
RTX 3090 (24GB) graphics card using a Python
program based on PyTorch.

4 RESULT

4.1 Validation of satellite-derived SSS and SST

Al models are data-driven models, and the
quality of the input dataset directly affects their
performance (Jiang et al., 2021). This study uses
high-resolution satellite observation data in the
training process of the DA-CNN model and derives
label data from Argo gridded data. Since the MLD
in the Argo dataset is calculated based on vertical
temperature and salinity data, it is necessary to
validate the reliability of the satellite-derived SSS
and SST data by comparing them with the Argo
gridded data when they are used as input variables
of the model. As shown in Fig.4a, the monthly
average of satellite-derived SSS and Argo-derived
SSS show good agreement and similar seasonal

Table 2 Optimal parameter values for DA-CNN models in different months

Month Jan. Feb. Mar. Apr. May
Conv_P1 16 32 16 16 16
Conv_P2 32 64 32 32 32
Conv_P3 64 128 64 64 64
Conv_C1 16 32 16 16 16
Conv_C2 32 64 32 32 32
Conv_C3 64 128 64 64 64

Fusion layer 128 128 128 128 128
Learning rate 0.05 0.05 0.05 0.05 0.08

Kernal size 3 3 3 3 3

Jun. Jul. Aug. Sep. Oct. Now. Dec.
8 16 32 8 8 16 32
16 32 64 16 16 32 64
32 64 128 32 32 64 128
8 16 32 8 8 16 32
16 32 64 16 16 32 64
32 64 128 32 32 64 128
64 128 128 64 64 64 256

0.01 0.02 0.05 0.05 0.04 0.05 0.05
3 3 3 3 3 3 3
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variation features. For instance, the SSS values from
remote sensing and Argo observations are 33.2 and
32.9 in March and October, respectively, and are
close to equal. It can be also observed that the
relatively large difference between the two datasets
occurs in summer and is approximately 0.4, which
may be due to their different measurement errors and
sources (Zhao et al., 2023). Although there exists a
certain level of discrepancy, they are insignificant.
Similarly, the satellite-derived SST data averaged
over the BoB is also in agreement with the Argo SST
data on a seasonal scale (Fig.4b). For example, both of
them show that the maximum SST value (>29.8 °C)
occurs in April, while the SST minimal values
(<27.5°C) in January, and the differences between
the two datasets are less than 0.2 °C. These
comparative results demonstrate the reliability of the
satellite-derived SSS and SST data used in this study.

4.2 Identification of input variables

To determine the optimal combination of input
variables for the DA-CNN model, the Pearson
correlation coefficient is applied to quantitatively
analyze the correlation between the MLD and each
input variable. Figure 5 shows the monthly average
Pearson correlation coefficients of the MLD and
SSS/SST/SSH/USSW/VSSW  (individually) from
January 2010 to December 2019. Generally, an
increase in SST decreases the density, making the
mixed layer shallower, while an increase in SSS
raises it, making the layer deeper (Kara et al.,
2000b, 2003; Mignot et al., 2007). As seen in Fig.5,
the SSS exhibits a positive correlation with the
MLD throughout the year. Their monthly average
correlation coefficient values are consistently
around 0.5 or higher, up to 0.7. Moreover, these

3872 3674,
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Fig.4 Comparison of the Argo (dashed black line) and satellite (solid blue line) for the monthly average SSS (a) and the
monthly average SST (b) in the BoB from January 2010 to December 2019
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values exceed the corresponding values between the
MLD and the other four variables in most months.
The findings indicate that the SSS is the most
significant factor influencing the MLD in the BoB,
consistent with previous studies (Pailler et al.,
1999). The SST is positively correlated with the
MLD in winter and spring, suggesting that
simultaneous increases in the SST and SSS promote
the MLD deepening. On the contrary, the negative
correlation between the SST and MLD in summer
and autumn indicates that the SSS dominates the
MLD variations during this period, while the SST
plays a minor role in its variations. The correlation
coefficient between the MLD and SSH is close to
0.4 in summer, while their correlation was relatively
smaller in winter at approximately 0.2. This
indicates that SSH shows a greater effect on the
MLD of the BoB in summer than in winter. In
parallel, The MLD is better correlated to the USSW
compared to the VSSW (Fig.5). The negative
correlation coefficient between the MLD and USSW
in spring reaches 0.6. This demonstrates a greater
linkage between the USSW and the MLD. The
correlation analysis between the MLD and sea
surface parameters elucidates the effect of each sea
surface parameter on the MLD and provides the
reasons for the involvement of the selected input
variables for the model.

4.3 Input variable comparison experiment

Studies have shown that sea surface parameters,
e.g., SST, SSH, SSS, USSW, VSSW, and geographic
information, help improve the accuracy of MLD
estimation (Su et al., 2021a; Wang et al., 2021; Gu
et al., 2022; Qi et al., 2023). However, there are few
quantitative analyses to assess the importance of
each input variable in individually affecting the

-SSS
2 -SST
= 0.61 ~-VSSW
SARTANAan
o
0.2
5 o2 IlI Aarsnam I|||. _|||.I
RO L N L
8-0.41
£-0.6
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Fig.5 Pearson correlation coefficients between the sea

surface parameters (SSS, SST, SSH, USSW, and

VSSW) and the Argo-derived MLD from January

2010 to December 2019
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MLD estimation. To investigate the quantitative
impact of each input variable on the estimation
performance of the proposed DA-CNN model, we
designed four cases of experiments with different
combinations of input variables, as shown in
Table 3. Since the MLD is derived from the density
threshold method in this study, the combination of
the SSS, SST, and geographical information is set
as the baseline experiment, named Case 1. For
comparison, Case 2 and Case 3 add the SSH, and
then USSW and VSSW, to Case 1, respectively.
Case 4 refers to an experiment where all parameters
are used as the input variables of the model. As
listed in Table 3, the annual average RMSE and R*
of the DA-CNN model in Case 4 are 2.71 m and
0.85, respectively, and the model achieves the best
estimation results among the four experiments.
Compared to Case 1, the annual average RMSE and
R?* are improved by 10.1% and 8.6% for Case 2 with
the SSH, 6.8% and 8.8% for Case 3 with the USSW
and VSSW, and 16.4% and 13.1% for Case 4,
respectively. The comparison results show that the
model in Case 4 has the best estimation
performance, while the SSH in Case 2 displays
superior improvements on the model results in
comparison to the USSW and VSSW in Case 3.

The estimation performance of the model in the
different cases is further analyzed on a seasonal
scale. Figure 6 illustrates the wvariations in the
monthly average RMSE and R* for the DA-CNN
model for Case 1 to Case 4 in 2019. According to
the comprehensive comparison of all cases, it can be
noted that the model performance in the four cases
shows similar seasonality. Input variables play
different roles in the estimation effects of the model
in different months, generally consistent with the
results of the previous correlation analysis between
the variables. For example, the correlation between
the MLD and SSW is greater than that of the SSH
from January to March (Fig.5). Correspondingly, the
DA-CNN model in Case 3 has smaller RMSEs and
larger R* values compared to Case 2. Case 4 shows

Table 3 Comparison experiment quantitative results

Annual RMSE R?
R Annual . .
Experlmem average average RZ lmprOVement lmprovement

RMSE (m) & (%) (%)

Case 1 3.25 0.75 — —
Case 2 2.92 0.81 10.1 8.6
Case 3 3.03 0.81 6.8 8.8
Case 4 2.71 0.85 16.4 13.1

— means no data.
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Fig.6 Variations of monthly average RMSE (m) and R for the variable comparison experiment in 2019
The bars and lines represent RMSE and R?, respectively.

the best estimation of the annual cycle in the MLD
except for May and October. About the estimation
for May, Case 4 presents RMSE and R* of 2.10 m
and 0.76, slightly worse than the values of 1.96 m,
and 0.79 for the experiment Case 2. Regarding the
estimation for October, Case 2 and Case 4 are
insignificantly different from Case 1. In comparison,
the performance of Case 3 shows the worst
estimation of the MLD. This can be attributed to the
fact that the input variables of the model in both
months are characteristically entangled, thus
limiting the model’s capability to capture the
nonlinear relationship among the input variables
(Karras et al., 2021). In addition, the strongest
positive Indian Ocean Dipole (IOD) event in the
Indian Ocean in 2019 may also make these variables
anomalous (Du et al., 2020), which may have an
impact on the performance of the estimation model.

4.4 Evaluation of the DA-CNN model in Case 4

In this section, the performance of the DA-CNN
model in Case 4 is comprehensively evaluated from
multiple perspectives. In Section 4.4.1, three
experiments on model ablation are conducted to
demonstrate the superiority of the DA-CNN model.
Two experiments are performed in Section 4.4.2 to
verify the generalization ability of the DA-CNN
model. Moreover, the monthly average MLD in the
BoB in 2019 is estimated by the DA-CNN model,
and its spatial distribution characteristics are
analyzed in Section 4.4.3. The effect of the DA
module in the CNN model on the estimation
performance is quantitatively analyzed from the
aspect of the season in Section 4.4.4.

4.4.1 Experiment on model ablation

Three experiments on model ablation were

designed to better understand the estimation
performance of the DA-CNN model. The ablation
models are the original CNN model without
attentional mechanism, the CNN model with only
the CAM (CAM-CNN), and the CNN model with
only the PAM (PAM-CNN). These models were
applied to estimate the MLD in the representative
months (February, May, August, and November) of
the four seasons in 2019. As shown in Table 4, any
attention mechanism can improve the estimation
accuracy of the model compared with the original
CNN model. For example, The RMSE values of the
CAM-CNN model, PAM-CNN model, and DA-
CNN model are reduced by 0.43, 0.36, and 0.87 m
compared to that of the CNN model in August,
respectively. Moreover, the DA-CNN model
achieves the best estimation performance in each
season, especially in the summer when the MLD is
the deepest. These experimental results suggest
that the introduction of the DA module
significantly enhances the fitting ability of the
CNN model and improves the estimation accuracy
of the model.

4.4.2 Experiment on model generalization ability

The DA-CNN models for February, May,
August, and November, as representative for the
four seasons in 2019, are used to estimate the MLD
for these months to verify whether the model for
specified months can be generalized to estimate the

Table 4 Experiment results on model ablation

RMSE (m) Feb. May Aug. Nov.
CNN 3.07 2.48 5.64 1.76
CAM-CNN 3.19 2.32 5.21 1.69
PAM-CNN 3.07 2.43 5.28 1.66
DA-CNN 3.03 2.1 4.77 1.53
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MLDs in other months. The RMSE values for each
month are listed in Table 5 with the best RMSE
values highlighted in red. As shown in Table 5, the
models trained for a particular month each show the
most efficient estimation of the MLD for the
corresponding month. This suggests that for oceans
with significant seasonality, it is necessary to build
models for different months, i.e., generic parameter
sets for different seasons will reduce the accuracy of
MLD estimates.

The trained DA-CNN models from January to
April are applied to the MLD estimation for the
corresponding months in 2019 and 2020 to further
validate the estimation performance of these models
in different years, respectively. The monthly average
RMSE values of the models for January to April in
2019 and 2020 are shown in Table 6. It can be seen
that the RMSE for each month in 2020 increases in
different degrees compared to that in 2019. This
may be due to the fact that the trained model
adequately learns the continuous spatio-temporal
features from 2010 to 2018 and thus the estimation
performance of the model performs better in 2019,
whereas its performance is poor in 2020 due to the
lack of extraction of features for 2019. The above
experiments indicate that the DA-CNN model has
the generalization ability to a certain extent, but
there is room for further improvement.

4.4.3 Spatiotemporal distribution of the estimated
MLD

Spatiotemporal characteristics of the MLD in
2019 are estimated by the DA-CNN model, and then
evaluated to analyze the modelling accuracy.
Figure 7 shows a comparison of average monthly
estimated and Argo-derived MLDs with seasonal

Table 5 Experimental results on universal parameters of

the model
RMSE (m) Feb-Model May-Model Aug-Model Nov-Model
Feb. 3.03 4.92 6.33 7.3
May 4.95 2.10 3.78 5.74
Aug. 9.27 8.52 4.71 13.31
Nov. 4.70 4.12 4.95 1.53

The red value indicates the optimal RMSE for different models to
estimate the current month.

Table 6 Results of the MLD estimation for the first four

months of 2019 and 2020
RMSE (m) Jan. Feb. Mar. Apr.
2019 2.04 3.03 0.69 1.87
2020 8.58 4.45 2.30 2.13

Vol. 43

variations in 2019. As shown, the estimated MLD in
the BoB presents an asymmetric bimodal peak in the
summer and winter of the Northern Hemisphere,
with the maximum of about 40 m in summer being
significantly larger than the maximum of about
25 m in winter. This is generally in line with the
Argo-derived values. Moreover, Fig.8 displays the
spatial distribution of the seasonality between the
Argo-derived MLD and the estimated MLD, also in
general consistent with that of the Argo-derived
MLD in a typical month (February, May, August,
and November) of each season, with the differences
ranging from -4 to 4 m in most regions. There is a
noticeable gradient trend in the Argo-derived MLD
from northeast to southwest in May 2019, with
depths deepening from 20 m in the northeast to
35 m in the southwest, which trend is also revealed
by the proposed model while keeping the error
within 4 m in most regions. Therefore, the model
effectively captures the geographic variations of the
MLD in the BoB. However, there are still some
differences between the estimated MLD and the
Argo-derived MLD in certain regions with complex
ocean dynamics processes. For example, the MLD
is overestimated in coastal regions in the northern
BoB during February and August, with a difference
of less than 6 m. This may be caused by the
complex change in salinity due to a large number of
runoff inputs and substantial precipitation in the
region (Akhil et al., 2020). These differences
indicate that the DA-CNN model made better
estimations in open oceans compared to ocean areas
of nonlinear signals due to complex dynamic
processes.

4.4 .4 Performance verification of DA module

In this section, the accuracy of the MLDs that are
estimated by the DA-CNN model in Case 4 and the
original CNN model are compared. Figure 9 shows
the variations of the monthly average RMSE and R?
for the two models in different months during 2019.

- DA-CNN
- Argo

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.
Month

Fig.7 Monthly average MLD from Argo-derived and DA-
CNN estimation at different months in 2019
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Fig.8 Spatial distribution of the MLD from Argo-derived (top panel) and DA-CNN model estimation (bottom panel) in
four typical months (February, May, August, and November) in 2019

It is indicated that the DA-CNN model and the
original CNN model have good consistency in
estimation accuracy during most months. For
example, both models effectively capture the annual
variations of MLD in February and December.
Meanwhile, the differences in the RMSE as well as
R* values of both models are not obvious in the two
months, with discrepancies of approximately 0.05 m
and 0.01, 0.1 m and 0.03, respectively. Through a
year, the DA-CNN model exhibits superior
estimation compared to the CNN model. In
particular, the estimation accuracy of the DA-CNN
model significantly improved in January and
October, with the RMSE reduced by 0.9 and 0.45 m,
and the R* increased by 0.5 and 0.3, respectively.
This suggests that the DA module effectively
enhances the nonlinearly fitting ability of the CNN
model, although the Argo-derived MLD in January

and October of 2019 shows extreme phenomena
compared to the same months in the rest years (Du
et al.,, 2020). Notably, the estimation accuracy of
both the CNN and D-CNN models is not good
enough in June and August of 2019. This may be
related to the fact that these two months
underwent the onset and retreat processes of the
strongest southwest monsoon in the BoB over the
past 25 years (Greaser et al., 2020; Ratna et al.,
2021). Overall, our results indicate that the CNN
model, with its outstanding feature extraction
capabilities on high-dimensional data, achieves
favorable estimation results. Furthermore, the
involvement of the DA mechanism significantly
improves the estimation of MLD using the CNN
model.

Moreover, the impact of the DA added onto the
CNN model is validated by evaluating annual

==DA-CNN 1.0
6 = CNN ~
&
5 r0.8 %
2
g
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Sl .S
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24 5]
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Fig.9 The monthly average RMSE (m) and R’ for the DA-CNN model and CNN model at different months in 2019
The bars indicate RMSE (m) and the lines indicate R*.
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mean estimation. Figure 10 displays the spatial
distribution of the RMSE and R* in the annual
average estimated by the DA-CNN model and the
original CNN model. As shown, the DA-CNN
model outperforms that of the original CNN model
along certain coasts in the northern and western
BoB, although the estimation accuracy of both
models is not good enough due to the fact that these
regions are affected by many negative factors such
as the large fluctuations in salinity and the
complexity in ocean currents (Rao et al., 2010; Ray
et al, 2022). For example, the annual average
RMSE and R* values for the DA-CNN model are
improved by 2.0m and 0.4 in northern regions
(15°N-20°N, 90°E-95°E), and 1.5m and 0.3 in
western regions (10°N-15°N, 80°E—-85°E) with
respect to those of the CNN model, respectively.
This indicates that the DA-CNN model may
effectively estimate the MLD in regions with
complex ocean dynamics. Quantitatively, the RMSE
and R* values for the DA-CNN model in terms of
annual averages are significantly improved by
13.0% and 8.4% compared to those for the CNN
model of 3.12 m and 0.78, respectively. Therefore,
by integrating with the attention mechanism, the
estimation accuracy of the DA-CNN model is
effectively improved compared to the original CNN
model.

4.5 Estimation performance comparison with
other models

In this section, the results using the DA-CNN
model in Case 4 are compared with the data-driven
CNN model, RF model, and ANN model, as well as
the physics-driven HYCOM model. The parameters
of the CNN model use the same parameters as in the
DA-CNN model except for the removal of the DA
module from the model architecture, as listed in
Table 2. The ANN model consists of three linear
layers, with 64 and 128 neurons in each layer,
respectively. The RF model constructs decision trees

J. OCEANOL. LIMNOL., 43(4), 2025
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by randomly extracting features and combining
them from the dataset. In addition, the RF model
depends on 4 key parameters of the number of
decision trees in the model (n_estimators), the
minimum number of samples to split an internal
node (min_samples_split), the minimum number of
samples to split a leaf node (min_samples_leaf) and
the maximum depth of the tree (max_depth), using
values of 100, 2, 4, and 10, respectively.

4.5.1 Annual average performance among models

The annual average RMSE and R? values for five
estimation models are shown in Table 7. The DA-
CNN model has the best estimation performance
among models, as demonstrated by minimum
RMSE and maximum R*> values. Figure 1la—f
display the spatial distributions of the annual
average MLDs obtained by the Argo and these
models in 2019. Meanwhile, the differences
between the Argo-derived MLD and that estimated
by these models are also depicted in Fig.11g—k. As
shown, the MLDs estimated by these models are
overestimated in the northern BoB meanwhile
underestimated in the western BoB. Nevertheless,
the spatial distribution differences of the DA-CNN
model are still the smallest. In comparison, the
HYCOM model shows the worst performance
among the five models. Here, in spite of the highest
spatiotemporal resolution, the HYCOM encounters
cases where the initial or boundary conditions are
not suitable for local regions, resulting in the poor
estimation of the regional MLD (Duerr et al., 2012).
This further highlights the advantage of using Al
models compared to the traditional physics-driven
models in the estimation of the MLD.

The correlation densities of the annual average
MLD in 2019 estimated by each model and the
Argo-derived are presented in 2019 (Fig.12). It is
shown that most data points of the DA-CNN model
are closer to the equal value lines than those of the
other models, while this model also has the

DA-CNN CNN DA-CNN CNN
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Fig.10 Spatial distribution of the annual average RMSE (m) and R* in 2019
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Table 7 Annual average RMSE for these models

Model Annual average RMSE (m) Annual average R?
DA-CNN 2.71 0.85
CNN 3.12 0.78
RF 3.24 0.76
ANN 4.64 0.63
HYCOM 7.11 0.29

minimum RMSE and maximum R’. This indicates
that the results estimated by the DA-CNN model are
the most reliable. The reason may be that the
introduced DA module helps the CNN model to
learn the latent nonlinear relationships within the
data more efficiently. Additionally, the results of the
CNN and RF models for estimating MLD are almost
equivalent but commonly show less accuracy
compared to that of the DA-CNN model. Whereas,
the density distributions of the RF model are
relatively more scattered compared to those of the
CNN model. Possibly, this is due to the low
complexity of the RF model, making it difficult to
capture complex local characteristics or reveal
potential quantitative relationships. The ANN model
estimates and HYCOM reanalysis data contain a
large number of outliers, indicating a limited ability
to estimate the MLD accurately in the BoB. Overall,
the DA-CNN model exhibits the best accuracy in
estimating the MLD in the BoB.

4.5.2 Comparison of seasonal average performance
of models

In this section, the estimation performance
among the five models with seasonal variations is
compared on the basis of averaged RMSEs in
different seasons. Figure 13 shows the boxplot
distribution of the seasonal and annual average
RMSEs for the five models in 2019. The seasonal
average RMSE values for these models are shown in
Table 8. As shown in Fig.13, the DA-CNN and
CNN models based on the convolutional
architecture have fewer outliers and fewer offsets
compared to the other models, reaffirming the
excellent learning capability of convolutional layers
for high-dimensional feature data. Moreover, the
DA-CNN model shows the best estimation accuracy,
as demonstrated by the minimum RMSE values of
1.52, 3.65, 1.87, and 2.66 m in the four seasons,
respectively (Table 8). In addition, the summer
MLD reaches peak values in summer (Fig.7),
leading to a general decrease in the estimation
accuracy of all models in this season, and the

JIA et al.: DA-CNN model for estimating MLD in the Bay of Bengal 1087

estimation accuracy of the DA-CNN model is most
substantially improved in the summer with respect
to the other seasons (Fig.13). Therefore, the
proposed DA-CNN model outperforms the other
data-driven and physics-driven models, which
effectively captures the spatiotemporal characteristics
of the MLD in the BoB and accurately simulates
seasonal wvariations, demonstrating robust and
effective estimation capabilities.

5 CONCLUSION

This study aims to provide an estimation
approach capable of assessing and analyzing the
MLD in some typical ocean regions with complex
dynamic processes, using the BoB as a case study.
We develop a new DA-CNN model to estimate the
MLD by integrating multi-source remote sensing
data and Argo data. The multi-source datasets
spanning 120 months from 2010 to 2019, with 653
data points for each variable per month, are
collected from satellite observations and Argo
gridded data in the BoB. The seven parameters
(SST, SSS, SSH, USSW, VSSW, LON, LAT) and
Argo-derived MLD are utilized as input and output
variables of the model, respectively. Four groups of
comparison experiments denoted as Case 1 to Case
4 are designed to verify the performance of the DA-
CNN model with variable inputs in estimating the
MLD in the BoB. The comparative results
demonstrate that the model in Case 4 shows the best
capability in capturing the complex features of the
monthly MLD in the region. The DA-CNN model
demonstrates improved accuracy in all months of
2019 compared with the original CNN model, with
annual average RMSE and R* values are 2.71 m and
0.85, respectively. This superior performance can be
attributed to the better ability of the model
incorporating the DA module to capture spatial
features and characterize complex ocean processes.
The performance of the DA-CNN model in Case 4
is also evaluated in multiple perspectives of spatial
distributions in different months, comparison with
other models, and seasonal variations. Overall, the
developed DA-CNN model exhibits superior
performance and can effectively estimate the MLD
in the BoB regions.

The MLD estimated by the DA-CNN model in
Case 4 not only shows good agreement with the
Argo-derived MLD from a  spatiotemporal
distribution perspective but also simulates the two
peaks of the MLD occurring in both the summer and
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Fig.11 Spatial distribution of annual average MLD in the BoB obtained from Argo (a), five models estimated MLDs (b-f)
and the difference between the Argo-derived MLD in 2019 (g-k)

The brown region indicates that the difference is more significant than zero, meaning that the models underestimate the MLD values. The gray

region means the models overestimate the MLD values.

winter in the BoB. Three experiments on model
ablation show that the introduction of the DA
module significantly improves the estimation
accuracy of the DA-CNN model, surpassing the
original CNN model, PAM-CNN model, and CAM-
CNN model. Meanwhile, the performance of the

proposed model integrated with the attention
mechanism has been effectively improved with
respect to that of the original CNN model in
some regions with complex ocean-atmosphere
interactions. For example, the annual average
RMSE and R values for the DA-CNN model are
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LA g 6 RF 1.73 429 311 272
g o . ANN 230 6.64 3.64 3.74
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5 L] 8 ° 7 CNN model and RF, respectively. Meanwhile, the
ANN model and HYCOM model show a large
number of offsets compared to the Argo
o g . observations. Finally, the performance of these
models with seasonal wvariations is further

Spring  Summer Autumn  Winter Annual

Fig.13 Boxplot distribution of the seasonal and annual
average RMSE (m) of five models in 2019
Boxes capture 25%-75% of the monthly RMSE values; the
middle black line represents the median RMSE values, and the
dots outside the box are considered outliers, whose values are

1.5xlower/upper quantile.

improved by 2.0 m and 0.4 in northern BoB, and
1.5 m and 0.3 in western BoB compared with those
of the CNN model, respectively. The DA-CNN
model in Case 4 is further compared with the RF,
ANN model, and HYCOM model. The comparison
results show that the DA-CNN model has the best
performance among the five models, which can
improve the RMSE and R* values by 13.0% and

quantitatively evaluated. The results suggest that the
DA-CNN model is also able to demonstrate the
seasonality of the MLD, surpassing other models of
the RF model, ANN model, and HY COM model.
Our findings aid in detecting and monitoring the
seasonal variation of the mixed layer in the BoB,
offering wvaluable insights for further scientific
understanding of oceanographic processes in this
region. On the other hand, the DA-CNN model has
limitations in some aspects such as estimating
extreme anomaly events and interpreting the
physical mechanisms of the results. Moreover, there
is still potential improvement in the accuracy and
generalization capability of the model due to the
impact of the Argo gridded data and the inherent
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shortcomings of the CNN model such as slow
parameter updates caused by complex network
structures. Future studies may delve into exploring
more advanced deep learning methods integrated
with oceanic dynamic mechanisms to enhance the
estimation accuracy even further.

6 DATA AVAILABILITY STATEMENT

The datasets generated and/or analyzed during
the current study are available from the
corresponding author on reasonable request.
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