
Journal of Oceanology and Limnology

Vol. 43, No. 4, pp. 1075-1092, 2025

https://doi.org/10.1007/s00343-024-4122-9

A dual-attention embedded CNN model for estimating 
mixed layer depths in the Bay of Bengal*

Wentao JIA1, 5, Xun GONG2, 3, 4, Shanliang ZHU1, 5, **, Jifeng QI6, 7, **, Xianmei ZHOU1, 5, 
Hengkai YAO1, 5, Xiang GONG1, 5, Wenwu WANG1, 5

1 School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
2 Institute for Advanced Marine Research, China University of Geosciences, Guangzhou 511462, China
3 State Key Laboratory of Biogeology and Environmental Geology, Hubei Key Laboratory of Marine Geological Resources, 

China University of Geosciences, Wuhan 430074, China
4 Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science 

Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan 

250014, China
5 Qingdao Innovation Center of Artificial Intelligence Ocean Technology, Qingdao 266061, China
6 Key Laboratory of Ocean Observation and Forecasting and Key Laboratory of Ocean Circulation and Waves, Institute of 

Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
7 University of Chinese Academy of Sciences, Beijing 100049, China

Received May 9, 2024; accepted in principle Jul. 2, 2024; accepted for publication Aug. 27, 2024

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2025

Abstract  Variations in ocean mixed layer depth (MLD) show a significant impact on energy balance in 
the global climate systems and marine ecosystems. At present, the accuracy of modeling MLD, especially 
in the region with complex ocean dynamics, remains a challenge, thus calling for an emergency using 
artificial intelligence approach to improve the assessment of the MLD. A novel convolutional neural 
network model was developed based on a dual-attention module (DA-CNN) to estimate the MLD in the 
Bay of Bengal (BoB) by integrating multi-source remote sensing data and Argo gridded data. Compared 
with the original CNN model, the DA-CNN model exhibits superior performance with notable 
improvements in the annual average root mean square error (RMSE) and R2 values by 13.0% and 8.4%, 
respectively, while more accurately capturing the seasonal variations in MLD. Moreover, the results using 
the DA-CNN model show minimum RMSE and maximum R2 values, in comparison to the calculation by 
the random forest, artificial neural network model, and the hybrid coordinate ocean model. Accordingly, 
our findings suggest that the newly developed DA-CNN model provides an effective advantage in 
studying the MLD and the associated ocean processes.

Keyword: mixed layer depth (MLD); remote sensing observation; dual-attention module (DA-CNN); Bay 
of Bengal

1 INTRODUCTION

Ocean mixed layer refers to surface depths of the 
ocean with quasi-homogeneous temperature, 
salinity, and density. It is critical for marine primary 
production, the exchange of heat, and momentum in 
ocean-atmosphere interactions (Lorbacher et al., 
2006). In particular, mixed layer depth (MLD) is a 
vital factor and plays an important role in regulating 
energy balance in the global climate system and 
carbon cycles (Kara et al., 2003; Keerthi et al., 

2013). For instance, it has been shown in heat 
budget analysis that the MLD has important 
implications for determining the location and 
seasonal evolution of warm blobs and temperature 
diagnosis over the New Pacific region (Shi et al., 
2022). More studies have also indicated that the 
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MLD variability can affect the rate of heat flux 
exchange between the ocean and atmosphere, the 
ocean’s ability to store and transport heat as well as 
carbon (Gadgil et al., 1984; Yamamoto et al., 2015; 
Dall’Olmo et al., 2016; Jang et al., 2017; Yu et al., 
2019), and the availability of light and nutrients to 
support the growth of phytoplankton (Dickey et al., 
1993; Polovina et al., 1995; de Fommervault et al., 
2017; Diaz et al., 2021; Xue et al., 2022).

According to in-situ observations, the MLD is 
predominantly reliant on vertical ocean temperature, 
salinity, and thus density profiles (Pailler et al., 
1999; Kara et al., 2000a; Thomson and Fine, 2003; 
Holte and Talley, 2009; Helber et al., 2012). The 
integration of multi-source observational data and 
threshold calculation methods has established a 
fundamental groundwork for the investigation of 
the MLD and upper-ocean dynamic processes. 
However, the spatiotemporal data from in-situ 
observations are often discontinuous, and their 
discontinuity and incompleteness can affect the 
estimation of the MLD. In technique, Holte et al. 
(2017) suggested the calculation of MLD using 
superior quality indicators better than threshold 
methods and significantly mitigates the tendency of 
these methods to overestimate the MLD in some 
regions with the deep mixed layer in winter. Li et al. 
(2017) enhanced the classic Barnes method by 
utilizing optimal parameters and response functions 
to reduce the error caused by the uneven spatial 
distribution of Argo observation data and 
established a MLD dataset that retains a more 
comprehensive set of mesoscale features. Although 
the spatiotemporal resolution of in-situ observation 
data and the calculation methods of MLD have been 
improved, classic methods still face challenges such 
as limited spatial coverage, low spatiotemporal 
resolution, and low accuracy (Hosoda et al., 2010; 
Holte et al., 2017; Li et al., 2017).

Over the past few decades, various methods have 
been widely applied to estimate the MLD, thanks to 
the rapid accumulation of in-situ, remote sensing, 
and aerial survey data, as well as the rapid 
development of ocean information detection 
techniques. Previous studies suggested that many 
oceanic subsurface phenomena can be characterized 
by the relevant surface parameter data (Fiedler, 
1988; Vernieres et al., 2014). For example, Rintoul 
and Trull (2001) explored the seasonal variations 
in MLD and nutrient concentrations by 
comprehensively analyzing aerial survey data of 
many years in the sub-Antarctic region, revealing 

the seasonal characteristics of the MLD in this 
region, which are shallow in summer and deep in 
winter. Li et al. (2000) estimated the MLD by 
matching the measured internal wave group 
velocities with those calculated by the model. 
Although observational data has achieved 
continuous and extensive sampling in both time and 
space, previous methods such as data assimilation 
and numerical simulation of subsurface ocean 
variables have generally been complex and 
computationally expensive, and their estimation 
accuracy cannot be guaranteed (Courtois et al., 
2017; Dwivedi et al., 2018; Wei et al., 2023).

Data-driven artificial intelligence (AI) models 
have received quite extensive attention in the field 
of oceanography in recent years, demonstrating 
superior performance in estimating internal ocean 
variables from different observation data (Meng 
et al., 2022; Yue et al., 2024). For example, Su et al. 
(2021b) proposed a bi-directional long short-term 
memory neural networks (Bi-LSTM) method to 
predict the global ocean sea surface temperature 
anomaly (STA) and sea surface salinity anomaly 
(SSA) in combination with surface remote sensing 
observations and subsurface Argo gridded data. 
Pauthenet et al. (2022) proposed an estimation 
method for the MLD in the Gulf of Mexico based on 
a multilayer perceptron, demonstrating the potential 
of machine learning methods in MLD estimation. 
Jeong et al. (2019) utilized high spatiotemporal 
resolution satellite sea surface data to reconstruct a 
3D thermohaline field in the ocean subsurface layer, 
and further estimated and analyzed the decadal 
variations in the global MLD. Foster et al. (2021) 
tested a variety of traditional and probabilistic 
machine learning techniques for the southern Indian 
and eastern equatorial Pacific regions and found that 
machine learning models combined with sea surface 
data can effectively improve the estimation accuracy 
of MLD compared with the optimal interpolation of 
Argo observation data. Su et al. (2024) proposed a 
Residual Convolutional Gate Recurrent Unit neural 
network to estimate the global MLD and the model 
can efficiently extract spatio-temporal features from 
ocean observations. These research methods based 
on AI techniques provide a new way of developing 
MLD estimation.

Although AI models have exhibited capability in 
estimating the MLD, the limitations of observational 
data and models have led to some remaining issues 
such as few input parameters, relatively simple 
models (Foster et al., 2021; Gu et al., 2022; 
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Pauthenet et al., 2022) and high estimation errors 
(Su et al., 2024). For example, Gu et al. (2022) used 
a pre-clustering-based artificial neural network 
(ANN) model and estimated the MLD in the Indian 
Ocean but with an averaged estimation error of 
about 3.79 m, and the estimation errors increased to 
7.02 m and 9.15 m in the Arabian Sea and the Bay 
of Bengal (BoB), respectively. This could be 
attributed to the insufficient ability of the model to 
extract and learn spatiotemporal characteristics with 
complex nonlinear relationships. Therefore, both the 
model itself and its accuracy have considerable 
potential improvement.

Furthermore, deep learning models based on 
attention mechanisms have attracted the attention of 
oceanographers (Li et al., 2022). Qi et al. (2023) 
developed a CNN model based on the attention 
mechanism to reconstruct the 3D thermohaline field 
in the Indian Ocean and achieved excellent results. 
Ren et al. (2022) developed a U-net model based on 
an attention module to classify the sea ice and open 
water from SAR images, and the results showed that 
the proposed method significantly improved the 
classification accuracy compared with the original 
U-net model.

Motivated by the aforementioned discussions, 
the primary objective of this study is to investigate a 
new way to estimate the MLD in some typical 
regions with complex dynamic processes by 
developing a novel AI model based on multi-source 
remote sensing data. Here, we proposed a CNN 
model based on a dual-attention module (DA-CNN) 
to estimate the MLD using multi-source satellite 
observation data in the BoB, as a case study. In 
addition, we evaluated the proposed model by 
comparing its performance with the data-driven 
CNN model, random forest (RF) model, and ANN 
model, as well as the physics-driven hybrid 
coordinate ocean model (HYCOM ).

2 STUDY AREA AND DATA

2.1 Study area

The BoB (5°N–20°N, 80°E–95°E), adjoining 
Asia and occupying the eastern part of the tropical 
Indian Ocean, is an important part of the Indo-
Pacific warm pool (Fig.1). The salinity in the BoB 
shows significant spatial and temporal variations 
due to the freshwater runoff from the hinterland 
river and substantial precipitation associated with 
summer monsoons (Howden and Murtugudde, 
2001; Vinayachandran et al., 2002; Akhil et al., 

2020). As a result, these abnormal fluctuations lead 
to large variability in the MLD of this region, which 
has a critical impact on some regional oceanic 
phenomena such as tropical cyclones, El Niño 
events, Indian Ocean dipoles, and monsoon 
variations (Masson et al., 2005; Yang et al., 2007; 
Balaguru et al., 2012; Kumari et al., 2018; Goswami 
et al., 2022). Therefore, the accurate estimation of 
MLD helps comprehend the variability of the ocean-
atmosphere heat flux and analyze the dynamic 
mechanism of these oceanic phenomena in the 
region.

2.2 Data source and preprocessing

The datasets in this study involve a series of sea 
surface remote sensing data and Argo gridded data 
in the BoB from January 2010 to December 2019, as 
summarized in Table 1. The sea surface temperature 
(SST) data of a horizontal resolution of 0.25°×0.25° 
is generated using a daily optimum interpolation 
method based on radiometer satellite from the 
National Oceanic and Atmospheric Administration 
(NOAA) and ship observations (Banzon et al., 
2016). In addition, the sea surface salinity (SSS) 
data is sourced from the Soil Moisture and Ocean 
Salinity (SMOS) Level-3 salinity product at a 
spatial resolution of 0.25°×0.25° (Boutin et al., 

Table 1 Summary of the data used in this study

Variable

SSS

SST

SSH

SSW

MLD

Data source

SMOS

NOAA

AVISO

CCMP

Argo

Time range

2010–2019

Resolution

Monthly/0.25°×0.25°

Monthly/0.25°×0.25°

Monthly/0.25°×0.25°

Monthly/0.25°×0.25°

Monthly/1°×1°

Fig.1 Bathymetry in the Bay of Bengal (5°N–20°N, 80°E–
95°E)
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2018). The sea surface height (SSH) data is obtained 
from the Archiving, Validation, and Interpretation of 
Satellite Oceanographic Data (AVISO) project also 
at a spatial resolution of 0.25°×0.25° (Hauser et al., 
2021). The eastward component sea surface wind 
(USSW) and northward component sea surface wind 
(VSSW) values are from the Cross-Calibrated Multi-
Platform (CCMP) product of a spatial resolution of 
0.25°×0.25° (Atlas et al., 2011). Moreover, Argo 
gridded data are obtained from the Asia Pacific Data 
Research Center (APDRC) with a spatial resolution 
of 1°×1° (Wong et al., 2020). Additionally, the 
MLD used for comparison is derived from the 
HYCOM reanalysis data to validate the estimation 
performance of the proposed model.

In our calculation, the SST, SSS, SSH, VSSW, 
and USSW are independent input variables for 
the proposed model. Additionally, geographic 
information such as longitude (LON) and latitude 
(LAT) can affect the performance of the estimation 
model (Gueye et al., 2014; Su et al., 2021a). 
Consequently, LON and LAT parameters with the 
same resolutions as other input parameters are 
selected as input variables for the model. The Argo-
derived MLD gridded data are used as the training 
and validation labels for the proposed model in this 
study. At the data preprocessing stage, all the data 
are monthly and interpolated onto a grid with a 
resolution of 0.5°×0.5°, in line with the temporal 
and spatial coverage of the BoB to ensure 
consistency and accuracy in the modeling 
calculation and evaluation. Any data point with 
missing parameters within the BoB is excluded. 
After that, a total of 120 monthly valid datasets from 
January 2010 to December 2019 are obtained, with 
653 valid data points for each variable per month. 
Finally, all data are normalized by utilizing the mean 
and standard deviation of the data to expedite model 
convergence.

3 METHOD

The CNN model is widely employed across 
various domains in deep learning (Lecun et al., 
1998; Qi et al., 2023). It functions on local 
connections and weight sharing, enabling efficient 
extraction and learning of features from high-
dimensional geographical spatial data. On the other 
hand, the CNN model still confronts challenges, for 
instance, information overload and complex 
network structures, leading to slow parameter 
updates and suboptimal expressive capabilities (Liu 

et al., 2018). In recent years, various attention 
mechanisms have been successfully applied to 
reduce computational complexity and enhance the 
network’s ability to process information (Li et al., 
2022; Ren et al., 2022; Qi et al., 2023). In this study, 
an improved DA-CNN model for complex 
multidimensional ocean data is proposed by 
integrating the dual attention (DA) module into the 
CNN architecture and is used to estimate the MLD 
in BoB, as an application case. In Section 3.1, the 
working principles and advantages of the DA 
module are presented, while Section 3.2 provides a 
detailed description of the specific architecture and 
estimation modeling process of the DA-CNN model.

3.1 DA module

The DA module is an algorithm that utilizes self-
attention mechanisms to adaptively integrate local 
semantic features, thereby enhancing the expressive 
capabilities of AI models in computer vision tasks 
(Fu et al., 2019). The DA module consists of two 
submodules, including the channel attention module 
(CAM) and the position attention module (PAM). 
The CAM captures the channel dependencies 
between any two channels and aids the model in 
more efficiently combining and selecting features, 
ultimately improving its expressiveness and 
generalization abilities. The PAM focuses on the 
spatial information of input data to capture critical 
information at various spatial positions. It helps the 
model better understand the significance of different 
positions when processing data like images, thereby 
enhancing the model’s localization and 
discrimination capabilities.

Figure 2 shows the structure of the DA module 
and DA-CNN model, where the structure of CAM is 
shown in Fig.2a. A∈RC×H×W is the local feature map 
output by the previous processing. A is reshaped 
into RC×N and performed matrix multiplication with 
its transpose Aʹ. The softmax layer is applied to 
obtain the channel attention map X∈RC×C, where xji 
measures the ith channel’s impact on the jth channel. 
Aʹ is multiplied with X and reshaped into RC×H×W. R 
is multiplied by a scale parameter α and added to the 
input A to obtain the output E∈RC×H×W element by 
element.

xji =
eAi Aj

∑i = 1

C eAi Aj

, (1)

Ej = α∑
i = 1

C

(xji Ai )+Aj, (2)
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where α is initialized to 0 and gradually learns to 
assign more weights by the backpropagation. It can 
be inferred from Eq.2 that the resulting feature E at 
each channel is the weighted sum of the global 
features R and local features A, it models the long-
term semantic dependencies between feature maps.

The structure of the PAM is shown in Fig.2b. A∈
RC×H×W is the local feature map extracted by the 
previous processing. H, W, and C are the rows, 
columns, and channels, respectively. A is 
transformed and reshaped to new feature maps B, C, 
and D by passing through three convolutional 
layers, respectively, where {B, C, D} ∈RC×N (N=H×
W). A matrix multiplication and softmax activation 
are performed on B and C to obtain the spatial 
position map S∈RN×N. The more similar feature 
representations of the two positions contribute to a 
greater correlation between them, where sji measures 
the ith position’s impact on jth the position. S is 
multiplied with D and reshaped to RC×H×W. For each 
channel of R, the element of a position is the 
weighted sum of elements across all positions in D 
based on the weights in S. R is multiplied by a scale 
parameter β and added to the input A in element-
wise to obtain the output E∈RC×H×W.

sji =
eBiCj

∑i = 1

N eBiCj

, (3)

Ej = β∑
i = 1

N

(sji Di )+Aj, (4)

where β is initialized to 0 and gradually learns to 
assign more weights by the backpropagation. It can 
be inferred from Eq.4 that the resulting feature E 
integrates the local features A and the global 

features R. Thus, it has a global context view and 
selectively aggregates context based on a position 
attention map.

3.2 DA-CNN model

The DA-CNN model is an improved model of 
the CNN model, specifically designed to enhance 
the accuracy of estimating MLD from multi-source 
remote sensing data. The PAM can help the model 
capture spatial relationships among features in the 
input data, enabling it to focus on important spatial 
locations. The CAM can emphasize the importance 
of different feature channels, highlighting 
significant features and suppressing irrelevant ones. 
The model is capable of focusing its attention on 
key variables and informative features by 
incorporating both the PAM and CAM, capturing 
the local and global dependencies of satellite data in 
the spatial and channel dimensions, thereby 
improving the generalization ability of the model.

The DA-CNN model is composed of 
convolutional layers, batch normalization (BN) 
layers, Rectified Linear Unit (ReLU) activation 
layers, DA modules, global average pooling (GAP) 
layers, and fully connected (FC) layers. BN layers 
and ReLU activation layers are applied after each 
convolutional layer to prevent overfitting as well as 
gradient explosion or vanishing. Figure 2c shows 
the overall architecture of the DA-CNN model. The 
preprocessed satellite observation data are fed into 
two parallel attention branches, where local 
feature maps are generated through successive 
convolutional operations. Each map undergoes 
individual attention mechanism processing and 
passes to deeper convolutional layers. Subsequently, 

Fig.2 Structure of CAM (a), PAM (b), and DA-CNN model (c)
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the features from both branches are merged and 
further processed through a convolutional layer to 
facilitate feature fusion. This convolutional layer 
stacks features along the channel dimension, 
effectively combining complementary information 
from two branches and enhancing feature 
discrimination. It reduces the dimensionality while 
preserving the information, decreasing the model 
complexity and computational resources. 
Additionally, a GAP layer is introduced to reduce 
computational complexity, followed by FC layers to 
output the MLD at a specific coordinate point. This 
streamlined process helps the network better 
understand and capture complex nonlinear 
relationships in the input data, while also speeding 
up the model training.

In this study, a DA-CNN model for estimating 
the MLD is developed using multi-source satellite 
observation data in the BoB. As shown in Fig.3, the 
study flow is divided into three stages. The 
collection and processing of raw data is the first 
stage. The raw datasets of the five sea-surface 
parameters (SST, SSS, SSH, USSW, VSSW), as 
well as LON and LAT for each point, are collected 
and preprocessed from multi-source databases. The 
training and testing datasets covering 120 months 
and 653 data points per month are established and 
the Argo-derived MLD data are used as the training 
and testing labels. In the second stage, the monthly 
average data from January 2010 through December 
2018 are taken as the training datasets to optimize 
the model parameters. Specifically, 108-month data 
is divided into 12 separate training datasets 
according to the same month. Each training dataset 
covering 9 months and 653 data points for each 
variable per month is fed into a DA-CNN estimation 
model for training respectively, leading to 12 
estimation models. The experiments determine 

several key hyperparameters that have a significant 
impact on the model performance, including the 
learning rate and the number of neurons per 
layer. The grid search method is employed to 
systematically explore combinations of these 
hyperparameters over a specified range. The search 
range for the learning rate is set between 0.01 and 
0.1, and the number of neurons ranges from 16 to 
256. The best combination of parameters for the 12 
DA-CNN models is presented in Table 2. In the 
third stage, the testing data for each month in 2019 
is input into the model for the corresponding month 
to obtain the results for this month. Meanwhile, the 
root mean square error (RMSE) and determination 
coefficient (R2) are chosen to evaluate the 
performance of the 12 DA-CNN models. The DA 
module code is based on open-source code, and the 
DA-CNN models are implemented and tested on an 
RTX 3090 (24GB) graphics card using a Python 
program based on PyTorch.

4 RESULT

4.1 Validation of satellite-derived SSS and SST

AI models are data-driven models, and the 
quality of the input dataset directly affects their 
performance (Jiang et al., 2021). This study uses 
high-resolution satellite observation data in the 
training process of the DA-CNN model and derives 
label data from Argo gridded data. Since the MLD 
in the Argo dataset is calculated based on vertical 
temperature and salinity data, it is necessary to 
validate the reliability of the satellite-derived SSS 
and SST data by comparing them with the Argo 
gridded data when they are used as input variables 
of the model. As shown in Fig.4a, the monthly 
average of satellite-derived SSS and Argo-derived 
SSS show good agreement and similar seasonal 

Table 2 Optimal parameter values for DA-CNN models in different months

Month

Conv_P1

Conv_P2

Conv_P3

Conv_C1

Conv_C2

Conv_C3

Fusion layer

Learning rate

Kernal size

Jan.

16

32

64

16

32

64

128

0.05

3

Feb.

32

64

128

32

64

128

128

0.05

3

Mar.

16

32

64

16

32

64

128

0.05

3

Apr.

16

32

64

16

32

64

128

0.05

3

May

16

32

64

16

32

64

128

0.08

3

Jun.

8

16

32

8

16

32

64

0.01

3

Jul.

16

32

64

16

32

64

128

0.02

3

Aug.

32

64

128

32

64

128

128

0.05

3

Sep.

8

16

32

8

16

32

64

0.05

3

Oct.

8

16

32

8

16

32

64

0.04

3

Nov.

16

32

64

16

32

64

64

0.05

3

Dec.

32

64

128

32

64

128

256

0.05

3
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variation features. For instance, the SSS values from 
remote sensing and Argo observations are 33.2 and 
32.9 in March and October, respectively, and are 
close to equal. It can be also observed that the 
relatively large difference between the two datasets 
occurs in summer and is approximately 0.4, which 
may be due to their different measurement errors and 
sources (Zhao et al., 2023). Although there exists a 
certain level of discrepancy, they are insignificant. 
Similarly, the satellite-derived SST data averaged 
over the BoB is also in agreement with the Argo SST 
data on a seasonal scale (Fig.4b). For example, both of 
them show that the maximum SST value (>29.8 °C) 
occurs in April, while the SST minimal values 
(<27.5 °C) in January, and the differences between 
the two datasets are less than 0.2 °C. These 
comparative results demonstrate the reliability of the 
satellite-derived SSS and SST data used in this study.

4.2 Identification of input variables

To determine the optimal combination of input 
variables for the DA-CNN model, the Pearson 
correlation coefficient is applied to quantitatively 
analyze the correlation between the MLD and each 
input variable. Figure 5 shows the monthly average 
Pearson correlation coefficients of the MLD and 
SSS/SST/SSH/USSW/VSSW (individually) from 
January 2010 to December 2019. Generally, an 
increase in SST decreases the density, making the 
mixed layer shallower, while an increase in SSS 
raises it, making the layer deeper (Kara et al., 
2000b, 2003; Mignot et al., 2007). As seen in Fig.5, 
the SSS exhibits a positive correlation with the 
MLD throughout the year. Their monthly average 
correlation coefficient values are consistently 
around 0.5 or higher, up to 0.7. Moreover, these 

Fig.3 The workflow of the methodologies used in this study

Fig.4 Comparison of the Argo (dashed black line) and satellite (solid blue line) for the monthly average SSS (a) and the 
monthly average SST (b) in the BoB from January 2010 to December 2019
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values exceed the corresponding values between the 
MLD and the other four variables in most months. 
The findings indicate that the SSS is the most 
significant factor influencing the MLD in the BoB, 
consistent with previous studies (Pailler et al., 
1999). The SST is positively correlated with the 
MLD in winter and spring, suggesting that 
simultaneous increases in the SST and SSS promote 
the MLD deepening. On the contrary, the negative 
correlation between the SST and MLD in summer 
and autumn indicates that the SSS dominates the 
MLD variations during this period, while the SST 
plays a minor role in its variations. The correlation 
coefficient between the MLD and SSH is close to 
0.4 in summer, while their correlation was relatively 
smaller in winter at approximately 0.2. This 
indicates that SSH shows a greater effect on the 
MLD of the BoB in summer than in winter. In 
parallel, The MLD is better correlated to the USSW 
compared to the VSSW (Fig.5). The negative 
correlation coefficient between the MLD and USSW 
in spring reaches 0.6. This demonstrates a greater 
linkage between the USSW and the MLD. The 
correlation analysis between the MLD and sea 
surface parameters elucidates the effect of each sea 
surface parameter on the MLD and provides the 
reasons for the involvement of the selected input 
variables for the model.

4.3 Input variable comparison experiment

Studies have shown that sea surface parameters, 
e.g., SST, SSH, SSS, USSW, VSSW, and geographic 
information, help improve the accuracy of MLD 
estimation (Su et al., 2021a; Wang et al., 2021; Gu 
et al., 2022; Qi et al., 2023). However, there are few 
quantitative analyses to assess the importance of 
each input variable in individually affecting the 

MLD estimation. To investigate the quantitative 
impact of each input variable on the estimation 
performance of the proposed DA-CNN model, we 
designed four cases of experiments with different 
combinations of input variables, as shown in 
Table 3. Since the MLD is derived from the density 
threshold method in this study, the combination of 
the SSS, SST, and geographical information is set 
as the baseline experiment, named Case 1. For 
comparison, Case 2 and Case 3 add the SSH, and 
then USSW and VSSW, to Case 1, respectively. 
Case 4 refers to an experiment where all parameters 
are used as the input variables of the model. As 
listed in Table 3, the annual average RMSE and R2 
of the DA-CNN model in Case 4 are 2.71 m and 
0.85, respectively, and the model achieves the best 
estimation results among the four experiments. 
Compared to Case 1, the annual average RMSE and 
R2 are improved by 10.1% and 8.6% for Case 2 with 
the SSH, 6.8% and 8.8% for Case 3 with the USSW 
and VSSW, and 16.4% and 13.1% for Case 4, 
respectively. The comparison results show that the 
model in Case 4 has the best estimation 
performance, while the SSH in Case 2 displays 
superior improvements on the model results in 
comparison to the USSW and VSSW in Case 3.

The estimation performance of the model in the 
different cases is further analyzed on a seasonal 
scale. Figure 6 illustrates the variations in the 
monthly average RMSE and R2 for the DA-CNN 
model for Case 1 to Case 4 in 2019. According to 
the comprehensive comparison of all cases, it can be 
noted that the model performance in the four cases 
shows similar seasonality. Input variables play 
different roles in the estimation effects of the model 
in different months, generally consistent with the 
results of the previous correlation analysis between 
the variables. For example, the correlation between 
the MLD and SSW is greater than that of the SSH 
from January to March (Fig.5). Correspondingly, the 
DA-CNN model in Case 3 has smaller RMSEs and 
larger R2 values compared to Case 2. Case 4 shows 

Table 3 Comparison experiment quantitative results

Experiment

Case 1

Case 2

Case 3

Case 4

Annual 
average 

RMSE (m)

3.25

2.92

3.03

2.71

Annual 
average R2

0.75

0.81

0.81

0.85

RMSE 
improvement

(%)

–

10.1

6.8

16.4

R2 
improvement

(%)

–

8.6

8.8

13.1

– means no data.

Fig.5 Pearson correlation coefficients between the sea 
surface parameters (SSS, SST, SSH, USSW, and 
VSSW) and the Argo-derived MLD from January 
2010 to December 2019
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the best estimation of the annual cycle in the MLD 
except for May and October. About the estimation 
for May, Case 4 presents RMSE and R2 of 2.10 m 
and 0.76, slightly worse than the values of 1.96 m, 
and 0.79 for the experiment Case 2. Regarding the 
estimation for October, Case 2 and Case 4 are 
insignificantly different from Case 1. In comparison, 
the performance of Case 3 shows the worst 
estimation of the MLD. This can be attributed to the 
fact that the input variables of the model in both 
months are characteristically entangled, thus 
limiting the model’s capability to capture the 
nonlinear relationship among the input variables 
(Karras et al., 2021). In addition, the strongest 
positive Indian Ocean Dipole (IOD) event in the 
Indian Ocean in 2019 may also make these variables 
anomalous (Du et al., 2020), which may have an 
impact on the performance of the estimation model.

4.4 Evaluation of the DA-CNN model in Case 4

In this section, the performance of the DA-CNN 
model in Case 4 is comprehensively evaluated from 
multiple perspectives. In Section 4.4.1, three 
experiments on model ablation are conducted to 
demonstrate the superiority of the DA-CNN model. 
Two experiments are performed in Section 4.4.2 to 
verify the generalization ability of the DA-CNN 
model. Moreover, the monthly average MLD in the 
BoB in 2019 is estimated by the DA-CNN model, 
and its spatial distribution characteristics are 
analyzed in Section 4.4.3. The effect of the DA 
module in the CNN model on the estimation 
performance is quantitatively analyzed from the 
aspect of the season in Section 4.4.4.

4.4.1 Experiment on model ablation

Three experiments on model ablation were 

designed to better understand the estimation 
performance of the DA-CNN model. The ablation 
models are the original CNN model without 
attentional mechanism, the CNN model with only 
the CAM (CAM-CNN), and the CNN model with 
only the PAM (PAM-CNN). These models were 
applied to estimate the MLD in the representative 
months (February, May, August, and November) of 
the four seasons in 2019. As shown in Table 4, any 
attention mechanism can improve the estimation 
accuracy of the model compared with the original 
CNN model. For example, The RMSE values of the 
CAM-CNN model, PAM-CNN model, and DA-
CNN model are reduced by 0.43, 0.36, and 0.87 m 
compared to that of the CNN model in August, 
respectively. Moreover, the DA-CNN model 
achieves the best estimation performance in each 
season, especially in the summer when the MLD is 
the deepest. These experimental results suggest 
that the introduction of the DA module 
significantly enhances the fitting ability of the 
CNN model and improves the estimation accuracy 
of the model.

4.4.2 Experiment on model generalization ability

The DA-CNN models for February, May, 
August, and November, as representative for the 
four seasons in 2019, are used to estimate the MLD 
for these months to verify whether the model for 
specified months can be generalized to estimate the 

Fig.6 Variations of monthly average RMSE (m) and R2 for the variable comparison experiment in 2019
The bars and lines represent RMSE and R2, respectively.

Table 4 Experiment results on model ablation

RMSE (m)

CNN

CAM-CNN

PAM-CNN

DA-CNN

Feb.

3.07

3.19

3.07

3.03

May

2.48

2.32

2.43

2.1

Aug.

5.64

5.21

5.28

4.77

Nov.

1.76

1.69

1.66

1.53
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MLDs in other months. The RMSE values for each 
month are listed in Table 5 with the best RMSE 
values highlighted in red. As shown in Table 5, the 
models trained for a particular month each show the 
most efficient estimation of the MLD for the 
corresponding month. This suggests that for oceans 
with significant seasonality, it is necessary to build 
models for different months, i.e., generic parameter 
sets for different seasons will reduce the accuracy of 
MLD estimates.

The trained DA-CNN models from January to 
April are applied to the MLD estimation for the 
corresponding months in 2019 and 2020 to further 
validate the estimation performance of these models 
in different years, respectively. The monthly average 
RMSE values of the models for January to April in 
2019 and 2020 are shown in Table 6. It can be seen 
that the RMSE for each month in 2020 increases in 
different degrees compared to that in 2019. This 
may be due to the fact that the trained model 
adequately learns the continuous spatio-temporal 
features from 2010 to 2018 and thus the estimation 
performance of the model performs better in 2019, 
whereas its performance is poor in 2020 due to the 
lack of extraction of features for 2019. The above 
experiments indicate that the DA-CNN model has 
the generalization ability to a certain extent, but 
there is room for further improvement.

4.4.3 Spatiotemporal distribution of the estimated 
MLD

Spatiotemporal characteristics of the MLD in 
2019 are estimated by the DA-CNN model, and then 
evaluated to analyze the modelling accuracy. 
Figure 7 shows a comparison of average monthly 
estimated and Argo-derived MLDs with seasonal 

variations in 2019. As shown, the estimated MLD in 
the BoB presents an asymmetric bimodal peak in the 
summer and winter of the Northern Hemisphere, 
with the maximum of about 40 m in summer being 
significantly larger than the maximum of about 
25 m in winter. This is generally in line with the 
Argo-derived values. Moreover, Fig.8 displays the 
spatial distribution of the seasonality between the 
Argo-derived MLD and the estimated MLD, also in 
general consistent with that of the Argo-derived 
MLD in a typical month (February, May, August, 
and November) of each season, with the differences 
ranging from -4 to 4 m in most regions. There is a 
noticeable gradient trend in the Argo-derived MLD 
from northeast to southwest in May 2019, with 
depths deepening from 20 m in the northeast to 
35 m in the southwest, which trend is also revealed 
by the proposed model while keeping the error 
within 4 m in most regions. Therefore, the model 
effectively captures the geographic variations of the 
MLD in the BoB. However, there are still some 
differences between the estimated MLD and the 
Argo-derived MLD in certain regions with complex 
ocean dynamics processes. For example, the MLD 
is overestimated in coastal regions in the northern 
BoB during February and August, with a difference 
of less than 6 m. This may be caused by the 
complex change in salinity due to a large number of 
runoff inputs and substantial precipitation in the 
region (Akhil et al., 2020). These differences 
indicate that the DA-CNN model made better 
estimations in open oceans compared to ocean areas 
of nonlinear signals due to complex dynamic 
processes.

4.4.4 Performance verification of DA module

In this section, the accuracy of the MLDs that are 
estimated by the DA-CNN model in Case 4 and the 
original CNN model are compared. Figure 9 shows 
the variations of the monthly average RMSE and R2 
for the two models in different months during 2019. 

Table 5 Experimental results on universal parameters of 
the model

RMSE (m)

Feb.

May

Aug.

Nov.

Feb-Model

3.03

4.95

9.27

4.70

May-Model

4.92

2.10

8.52

4.12

Aug-Model

6.33

3.78

4.77

4.95

Nov-Model

7.3

5.74

13.31

1.53

The red value indicates the optimal RMSE for different models to 

estimate the current month.

Table 6 Results of the MLD estimation for the first four 
months of 2019 and 2020

RMSE (m)

2019

2020

Jan.

2.04

8.58

Feb.

3.03

4.45

Mar.

0.69

2.30

Apr.

1.87

2.13
Fig.7 Monthly average MLD from Argo-derived and DA-

CNN estimation at different months in 2019
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It is indicated that the DA-CNN model and the 
original CNN model have good consistency in 
estimation accuracy during most months. For 
example, both models effectively capture the annual 
variations of MLD in February and December. 
Meanwhile, the differences in the RMSE as well as 
R2 values of both models are not obvious in the two 
months, with discrepancies of approximately 0.05 m 
and 0.01, 0.1 m and 0.03, respectively. Through a 
year, the DA-CNN model exhibits superior 
estimation compared to the CNN model. In 
particular, the estimation accuracy of the DA-CNN 
model significantly improved in January and 
October, with the RMSE reduced by 0.9 and 0.45 m, 
and the R2 increased by 0.5 and 0.3, respectively. 
This suggests that the DA module effectively 
enhances the nonlinearly fitting ability of the CNN 
model, although the Argo-derived MLD in January 

and October of 2019 shows extreme phenomena 
compared to the same months in the rest years (Du 
et al., 2020). Notably, the estimation accuracy of 
both the CNN and D-CNN models is not good 
enough in June and August of 2019. This may be 
related to the fact that these two months 
underwent the onset and retreat processes of the 
strongest southwest monsoon in the BoB over the 
past 25 years (Greaser et al., 2020; Ratna et al., 
2021). Overall, our results indicate that the CNN 
model, with its outstanding feature extraction 
capabilities on high-dimensional data, achieves 
favorable estimation results. Furthermore, the 
involvement of the DA mechanism significantly 
improves the estimation of MLD using the CNN 
model.

Moreover, the impact of the DA added onto the 
CNN model is validated by evaluating annual 

Fig.8 Spatial distribution of the MLD from Argo-derived (top panel) and DA-CNN model estimation (bottom panel) in 
four typical months (February, May, August, and November) in 2019

Fig.9 The monthly average RMSE (m) and R2 for the DA-CNN model and CNN model at different months in 2019
The bars indicate RMSE (m) and the lines indicate R2.
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mean estimation. Figure 10 displays the spatial 
distribution of the RMSE and R2 in the annual 
average estimated by the DA-CNN model and the 
original CNN model. As shown, the DA-CNN 
model outperforms that of the original CNN model 
along certain coasts in the northern and western 
BoB, although the estimation accuracy of both 
models is not good enough due to the fact that these 
regions are affected by many negative factors such 
as the large fluctuations in salinity and the 
complexity in ocean currents (Rao et al., 2010; Ray 
et al., 2022). For example, the annual average 
RMSE and R2 values for the DA-CNN model are 
improved by 2.0 m and 0.4 in northern regions 
(15°N–20°N, 90°E–95°E), and 1.5 m and 0.3 in 
western regions (10°N–15°N, 80°E–85°E) with 
respect to those of the CNN model, respectively. 
This indicates that the DA-CNN model may 
effectively estimate the MLD in regions with 
complex ocean dynamics. Quantitatively, the RMSE 
and R2 values for the DA-CNN model in terms of 
annual averages are significantly improved by 
13.0% and 8.4% compared to those for the CNN 
model of 3.12 m and 0.78, respectively. Therefore, 
by integrating with the attention mechanism, the 
estimation accuracy of the DA-CNN model is 
effectively improved compared to the original CNN 
model.

4.5 Estimation performance comparison with 
other models

In this section, the results using the DA-CNN 
model in Case 4 are compared with the data-driven 
CNN model, RF model, and ANN model, as well as 
the physics-driven HYCOM model. The parameters 
of the CNN model use the same parameters as in the 
DA-CNN model except for the removal of the DA 
module from the model architecture, as listed in 
Table 2. The ANN model consists of three linear 
layers, with 64 and 128 neurons in each layer, 
respectively. The RF model constructs decision trees 

by randomly extracting features and combining 
them from the dataset. In addition, the RF model 
depends on 4 key parameters of the number of 
decision trees in the model (n_estimators), the 
minimum number of samples to split an internal 
node (min_samples_split), the minimum number of 
samples to split a leaf node (min_samples_leaf) and 
the maximum depth of the tree (max_depth), using 
values of 100, 2, 4, and 10, respectively.

4.5.1 Annual average performance among models

The annual average RMSE and R2 values for five 
estimation models are shown in Table 7. The DA-
CNN model has the best estimation performance 
among models, as demonstrated by minimum 
RMSE and maximum R2 values. Figure 11a–f 
display the spatial distributions of the annual 
average MLDs obtained by the Argo and these 
models in 2019. Meanwhile, the differences 
between the Argo-derived MLD and that estimated 
by these models are also depicted in Fig.11g–k. As 
shown, the MLDs estimated by these models are 
overestimated in the northern BoB meanwhile 
underestimated in the western BoB. Nevertheless, 
the spatial distribution differences of the DA-CNN 
model are still the smallest. In comparison, the 
HYCOM model shows the worst performance 
among the five models. Here, in spite of the highest 
spatiotemporal resolution, the HYCOM encounters 
cases where the initial or boundary conditions are 
not suitable for local regions, resulting in the poor 
estimation of the regional MLD (Duerr et al., 2012). 
This further highlights the advantage of using AI 
models compared to the traditional physics-driven 
models in the estimation of the MLD.

The correlation densities of the annual average 
MLD in 2019 estimated by each model and the 
Argo-derived are presented in 2019 (Fig.12). It is 
shown that most data points of the DA-CNN model 
are closer to the equal value lines than those of the 
other models, while this model also has the 

Fig.10 Spatial distribution of the annual average RMSE (m) and R2 in 2019
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minimum RMSE and maximum R2. This indicates 
that the results estimated by the DA-CNN model are 
the most reliable. The reason may be that the 
introduced DA module helps the CNN model to 
learn the latent nonlinear relationships within the 
data more efficiently. Additionally, the results of the 
CNN and RF models for estimating MLD are almost 
equivalent but commonly show less accuracy 
compared to that of the DA-CNN model. Whereas, 
the density distributions of the RF model are 
relatively more scattered compared to those of the 
CNN model. Possibly, this is due to the low 
complexity of the RF model, making it difficult to 
capture complex local characteristics or reveal 
potential quantitative relationships. The ANN model 
estimates and HYCOM reanalysis data contain a 
large number of outliers, indicating a limited ability 
to estimate the MLD accurately in the BoB. Overall, 
the DA-CNN model exhibits the best accuracy in 
estimating the MLD in the BoB.

4.5.2 Comparison of seasonal average performance 
of models

In this section, the estimation performance 
among the five models with seasonal variations is 
compared on the basis of averaged RMSEs in 
different seasons. Figure 13 shows the boxplot 
distribution of the seasonal and annual average 
RMSEs for the five models in 2019. The seasonal 
average RMSE values for these models are shown in 
Table 8. As shown in Fig.13, the DA-CNN and 
CNN models based on the convolutional 
architecture have fewer outliers and fewer offsets 
compared to the other models, reaffirming the 
excellent learning capability of convolutional layers 
for high-dimensional feature data. Moreover, the 
DA-CNN model shows the best estimation accuracy, 
as demonstrated by the minimum RMSE values of 
1.52, 3.65, 1.87, and 2.66 m in the four seasons, 
respectively (Table 8). In addition, the summer 
MLD reaches peak values in summer (Fig.7), 
leading to a general decrease in the estimation 
accuracy of all models in this season, and the 

estimation accuracy of the DA-CNN model is most 
substantially improved in the summer with respect 
to the other seasons (Fig.13). Therefore, the 
proposed DA-CNN model outperforms the other 
data-driven and physics-driven models, which 
effectively captures the spatiotemporal characteristics 
of the MLD in the BoB and accurately simulates 
seasonal variations, demonstrating robust and 
effective estimation capabilities.

5 CONCLUSION

This study aims to provide an estimation 
approach capable of assessing and analyzing the 
MLD in some typical ocean regions with complex 
dynamic processes, using the BoB as a case study. 
We develop a new DA-CNN model to estimate the 
MLD by integrating multi-source remote sensing 
data and Argo data. The multi-source datasets 
spanning 120 months from 2010 to 2019, with 653 
data points for each variable per month, are 
collected from satellite observations and Argo 
gridded data in the BoB. The seven parameters 
(SST, SSS, SSH, USSW, VSSW, LON, LAT) and 
Argo-derived MLD are utilized as input and output 
variables of the model, respectively. Four groups of 
comparison experiments denoted as Case 1 to Case 
4 are designed to verify the performance of the DA-
CNN model with variable inputs in estimating the 
MLD in the BoB. The comparative results 
demonstrate that the model in Case 4 shows the best 
capability in capturing the complex features of the 
monthly MLD in the region. The DA-CNN model 
demonstrates improved accuracy in all months of 
2019 compared with the original CNN model, with 
annual average RMSE and R2 values are 2.71 m and 
0.85, respectively. This superior performance can be 
attributed to the better ability of the model 
incorporating the DA module to capture spatial 
features and characterize complex ocean processes. 
The performance of the DA-CNN model in Case 4 
is also evaluated in multiple perspectives of spatial 
distributions in different months, comparison with 
other models, and seasonal variations. Overall, the 
developed DA-CNN model exhibits superior 
performance and can effectively estimate the MLD 
in the BoB regions.

The MLD estimated by the DA-CNN model in 
Case 4 not only shows good agreement with the 
Argo-derived MLD from a spatiotemporal 
distribution perspective but also simulates the two 
peaks of the MLD occurring in both the summer and 

Table 7 Annual average RMSE for these models

Model

DA-CNN

CNN

RF

ANN

HYCOM

Annual average RMSE (m)

2.71

3.12

3.24

4.64

7.11

Annual average R2

0.85

0.78

0.76

0.63

0.29
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winter in the BoB. Three experiments on model 
ablation show that the introduction of the DA 
module significantly improves the estimation 
accuracy of the DA-CNN model, surpassing the 
original CNN model, PAM-CNN model, and CAM-
CNN model. Meanwhile, the performance of the 

proposed model integrated with the attention 
mechanism has been effectively improved with 
respect to that of the original CNN model in 
some regions with complex ocean-atmosphere 
interactions. For example, the annual average 
RMSE and R2 values for the DA-CNN model are 

Fig.11 Spatial distribution of annual average MLD in the BoB obtained from Argo (a), five models estimated MLDs (b–f)
and the difference between the Argo-derived MLD in 2019 (g–k)
The brown region indicates that the difference is more significant than zero, meaning that the models underestimate the MLD values. The gray 

region means the models overestimate the MLD values.
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improved by 2.0 m and 0.4 in northern BoB, and 
1.5 m and 0.3 in western BoB compared with those 
of the CNN model, respectively. The DA-CNN 
model in Case 4 is further compared with the RF, 
ANN model, and HYCOM model. The comparison 
results show that the DA-CNN model has the best 
performance among the five models, which can 
improve the RMSE and R2 values by 13.0% and 

8.4%, 16.3% and 10.6% compared to the original 
CNN model and RF, respectively. Meanwhile, the 
ANN model and HYCOM model show a large 
number of offsets compared to the Argo 
observations. Finally, the performance of these 
models with seasonal variations is further 
quantitatively evaluated. The results suggest that the 
DA-CNN model is also able to demonstrate the 
seasonality of the MLD, surpassing other models of 
the RF model, ANN model, and HYCOM model.

Our findings aid in detecting and monitoring the 
seasonal variation of the mixed layer in the BoB, 
offering valuable insights for further scientific 
understanding of oceanographic processes in this 
region. On the other hand, the DA-CNN model has 
limitations in some aspects such as estimating 
extreme anomaly events and interpreting the 
physical mechanisms of the results. Moreover, there 
is still potential improvement in the accuracy and 
generalization capability of the model due to the 
impact of the Argo gridded data and the inherent 

Table 8 Seasonal average RMSEs for these models

Model

DA-CNN

CNN

RF

ANN

HYCOM

Spring 
RMSE (m)

1.52

1.72

1.73

2.30

4.12

Summer 
RMSE (m)

3.65

4,44

4.29

6.64

7.81

Autumn 
RMSE (m)

1.87

2.20

3.11

3.64

5.06

Winter 
RMSE (m)

2.66

2.86

2.72

3.74

8.77

Fig.13 Boxplot distribution of the seasonal and annual 
average RMSE (m) of five models in 2019
Boxes capture 25%–75% of the monthly RMSE values; the 

middle black line represents the median RMSE values, and the 

dots outside the box are considered outliers, whose values are 

1.5×lower/upper quantile.

Fig.12 Scatterplots of the annual 
average MLD from Argo 
observation and four models 
in 2019
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shortcomings of the CNN model such as slow 
parameter updates caused by complex network 
structures. Future studies may delve into exploring 
more advanced deep learning methods integrated 
with oceanic dynamic mechanisms to enhance the 
estimation accuracy even further.

6 DATA AVAILABILITY STATEMENT

The datasets generated and/or analyzed during 
the current study are available from the 
corresponding author on reasonable request.
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