第5节 积分表的使用
基础题
利用积分表计算下列不定积分:
(1) $\displaystyle \int \frac{x^2}{(x+2)^2}\,dx$
解答:
先将被积式拆分:
$$\frac{x^2}{(x+2)^2}=\frac{(x+2-2)^2}{(x+2)^2}=1-\frac{4}{x+2}+\frac{4}{(x+2)^2}$$逐项积分:
$$\int 1\,dx = x$$$$\int -\frac{4}{x+2}dx = -4\ln|x+2|$$$$\int \frac{4}{(x+2)^2}dx = -\frac{4}{x+2}$$综上:
$$x-4\ln|x+2|-\frac{4}{x+2}+C$$(2) $\displaystyle \int \frac{1}{\sqrt{6-4x+x^2}}\,dx$
解答:
配方:
$$6-4x+x^2=(x-2)^2+2$$$$\int \frac{dx}{\sqrt{(x-2)^2+2}}=\ln\left|x-2+\sqrt{(x-2)^2+2}\right|+C$$(3) $\displaystyle \int \frac{x}{\sqrt{1+x -x^2}}\,dx$
解答:
先重写分母:
$$1+x-x^2= -\left(x^2-x-1\right)=-(x-\tfrac12)^2+\tfrac54$$令:
$$t=1+x-x^2,\quad dt=(1-2x)dx$$写成线性组合即可。最终积分为:
$$-\frac12 \sqrt{1+x-x^2}+\frac12 \arcsin\frac{2x-1}{\sqrt5}+C$$(4) $\displaystyle \int \frac{1}{x\sqrt{2x-1}}\,dx$
解答:
令 $t=\sqrt{2x-1}$,则:
$$t^2=2x-1 \Rightarrow x=\frac{t^2+1}{2},\ dx=t\,dt$$原式:
$$\int \frac{t}{\frac{t^2+1}{2}\,t}\,dt =\int \frac{2}{t^2+1}dt$$$$=2\arctan t +C =2\arctan\sqrt{2x-1}+C$$(5) $\displaystyle \int \frac{\sqrt{x-1}}{\sqrt{1+x}}\,dx$
解答:
令 $x=\cosh u$,或采用:
$$\sqrt{x-1}=\sqrt{\frac{x-1}{x+1}}\sqrt{x+1}$$令:
$$t=\sqrt{\frac{x-1}{x+1}}$$化为有理函数积分,最终:
$$\sqrt{x^2-1}-\arccos\frac{1}{x}+C$$(6) $\displaystyle \int \sqrt{2x^2-1}\,dx$
解答:
查表:
$$\int \sqrt{ax^2+b}\,dx=\frac{x}{2}\sqrt{ax^2+b}+\frac{b}{2\sqrt{a}}\ln\Big|x\sqrt{a}+\sqrt{ax^2+b}\Big|+C$$代入 $a=2,b=-1$ 得:
$$\frac{x}{2}\sqrt{2x^2-1}-\frac{1}{2\sqrt2}\ln\left|x\sqrt2+\sqrt{2x^2-1}\right|+C$$(7) $\displaystyle \int \sin^6 x\,dx$
解答:
利用降幂公式:
$$\sin^6 x=\frac{10}{32}-\frac{15}{32}\cos 2x+\frac{6}{32}\cos 4x-\frac{1}{32}\cos 6x$$逐项积分得:
$$\int \sin^6 x dx=\frac{5}{16}x-\frac{15}{64}\sin2x+\frac{3}{64}\sin4x-\frac{1}{192}\sin6x+C$$(8) $\displaystyle \int x^2\arcsin\frac{x}{2}\,dx$
解答:
分部积分,令:
$$u=\arcsin\frac{x}{2},\quad dv=x^2dx$$$$du=\frac{1}{\sqrt{4-x^2}}dx,\quad v=\frac{x^3}{3}$$$$\int x^2\arcsin\frac{x}{2}dx=\frac{x^3}{3}\arcsin\frac{x}{2}-\frac{1}{3}\int \frac{x^3}{\sqrt{4-x^2}}dx$$代换 $t=4-x^2$ 后可得最终结果:
$$\frac{x^3}{3}\arcsin\frac{x}{2}+\frac{1}{3}\sqrt{4-x^2}(x^2-2)+C$$(9) $\displaystyle \int \frac{1}{x^3(9+4x^2)}\,dx$
解答:
拆分:
$$\frac{1}{x^3(9+4x^2)}=\frac{A}{x^3}+\frac{B}{x}+\frac{Cx}{9+4x^2}$$求得:
$$A=\frac19,\ B=-\frac{4}{81},\ C=\frac{16}{81}$$积分:
$$\int\frac{1}{9x^3}dx=-\frac{1}{18x^2}$$$$\int -\frac{4}{81x}dx=-\frac{4}{81}\ln|x|$$$$\int\frac{16x}{81(9+4x^2)}dx=\frac{2}{81}\ln(9+4x^2)$$故:
$$-\frac{1}{18x^2}-\frac{4}{81}\ln|x|+\frac{2}{81}\ln(9+4x^2)+C$$(10) $\displaystyle \int \frac{x+1}{x^2-2x-1}\,dx$
解答:
分子配合分母微分:
$$x^2-2x-1=(x-1)^2-2$$$$x+1=(\frac12)(2x-2)+2$$拆分:
$$\int \frac{1}{2}\frac{2(x-1)}{(x-1)^2-2}dx + \int \frac{2}{(x-1)^2-2}dx$$第一项:
$$\frac12 \ln|(x-1)^2-2|$$第二项查表(双曲函数):
$$\int\frac{1}{u^2-a^2}du=\frac{1}{2a}\ln\left|\frac{u-a}{u+a}\right|$$得最终:
$$\frac12\ln|x^2-2x-1|+\frac{1}{\sqrt2}\ln\left|\frac{x-1-\sqrt2}{x-1+\sqrt2}\right|+C$$