第5节 极限的运算法则
一、基础题
1 求下列函数极限
(1) $\lim_{x\to 1}\dfrac{x^2-2x+1}{x^2-1}$
解答:
$$x^2-2x+1=(x-1)^2,\quad x^2-1=(x-1)(x+1)$$$$\frac{(x-1)^2}{(x-1)(x+1)}=\frac{x-1}{x+1}$$$$\lim_{x\to 1}\frac{x-1}{x+1}=\frac{0}{2}=0$$(2) $\lim_{x\to 0}\dfrac{4x^3-2x^2+x}{3x^2+2x}$
解答:
$$4x^3-2x^2+x=x(4x^2-2x+1),\quad 3x^2+2x=x(3x+2)$$$$\frac{x(4x^2-2x+1)}{x(3x+2)}=\frac{4x^2-2x+1}{3x+2}$$$$\lim_{x\to 0}\frac{4x^2-2x+1}{3x+2}=\frac{1}{2}$$(3) $\lim_{x\to\infty}\dfrac{x^2-1}{2x^2-x-1}$
解答:
同除以 $x^2$:
$$\frac{1-\frac{1}{x^2}}{2-\frac{1}{x}-\frac{1}{x^2}}$$$$\lim_{x\to\infty}\frac{1-\frac1{x^2}}{2-\frac1{x}-\frac1{x^2}}=\frac{1}{2}$$(4) $\lim_{x\to\infty}\dfrac{x^2+x}{x^4-3x^2+1}$
解答:
最高次幂比较,分子次数 < 分母次数:
$$\lim_{x\to\infty}\frac{x^2+x}{x^4-3x^2+1}=0$$(5) $\lim_{x\to\infty}\left(1+\frac{1}{x}\right)\left(2-\frac{1}{x^2}\right)$
解答:
直接代入极限:
$$\lim_{x\to\infty}\left(1+\frac{1}{x}\right)=1,\quad \lim_{x\to\infty}\left(2-\frac{1}{x^2}\right)=2$$$$1\cdot 2=2$$(6) $\lim_{x\to 4}\dfrac{x^2-6x+8}{x^2-5x+4}$ 解答:
$$x^2-6x+8=(x-2)(x-4),\quad x^2-5x+4=(x-1)(x-4)$$$$\frac{(x-2)(x-4)}{(x-1)(x-4)}=\frac{x-2}{x-1}$$$$\lim_{x\to 4}\frac{x-2}{x-1}=\frac{2}{3}$$二、提高题
2 极限
$\lim_{n\to\infty}\left(\sqrt{n+3\sqrt n}-\sqrt{n-\sqrt n}\right)$
解答: 使用乘以共轭:
$$\sqrt{n+3\sqrt n}-\sqrt{n-\sqrt n} =\frac{(n+3\sqrt n)-(n-\sqrt n)}{\sqrt{n+3\sqrt n}+\sqrt{n-\sqrt n}}$$$$=\frac{4\sqrt n}{\sqrt{n+3\sqrt n}+\sqrt{n-\sqrt n}}$$分母提取 $\sqrt n$:
$$\sqrt n\left(\sqrt{1+\frac{3}{\sqrt n}}+\sqrt{1-\frac{1}{\sqrt n}}\right)$$故极限为:
$$\frac{4}{\sqrt{1+0}+\sqrt{1-0}}=\frac{4}{2}=2$$3 极限
$\lim_{n\to\infty}\left[\sqrt{1+2+\cdots+n}-\sqrt{1+2+\cdots+(n-1)}\right]$
解答:
$$1+2+\cdots+n=\frac{n(n+1)}{2},\quad 1+2+\cdots+(n-1)=\frac{n(n-1)}{2}$$所求为:
$$\sqrt{\frac{n(n+1)}{2}}-\sqrt{\frac{n(n-1)}{2}}$$乘以共轭:
$$=\frac{\frac{n(n+1)}{2}-\frac{n(n-1)}{2}}{\sqrt{\frac{n(n+1)}{2}}+\sqrt{\frac{n(n-1)}{2}}}$$$$=\frac{\frac{n[(n+1)-(n-1)]}{2}}{\sqrt{\frac{n(n+1)}{2}}+\sqrt{\frac{n(n-1)}{2}}} =\frac{n}{\sqrt{\frac{n(n+1)}{2}}+\sqrt{\frac{n(n-1)}{2}}}$$分母提取 $\sqrt{n}$:
$$=\frac{n}{\sqrt n\left(\sqrt{\frac{n+1}{2}}+\sqrt{\frac{n-1}{2}}\right)} =\frac{\sqrt n}{\sqrt{\frac{n+1}{2}}+\sqrt{\frac{n-1}{2}}}$$两项趋向 $\sqrt{\frac{n}{2}}$,故分母趋向 $2\sqrt{\frac{n}{2}}$:
$$\lim_{n\to\infty}\frac{\sqrt n}{2\sqrt{\frac{n}{2}}}=\frac{1}{\sqrt 2}$$答案为:
$$\frac{1}{\sqrt 2}$$